Appendix A
Historic Documents

Reference No. 1

Environmental Assessment

Jon M. Loney, Assistant to the Manager (Environmental Matters and Program Support), Office of Natural Resources and Economic Development, 1D 53 OCH-K Paul Wade, Director of Fossil and Hydro Power, LP 3S 58K-C

JUN 17 1988

PARADISE FOSSIL PLANT - ENVIRONMENTAL ASSESSMENT (EA) FOR A FLY ASH DREDGE POND

- References: 1. Your memorandum to me dated March 30, 1988, on the above subject (MO1 880331 747)
 - Memorandum from Wally Carpenter to G. Leon Massey dated June 6, 1988, on the subject, "Johnsonville and Paradise Fossil Plants - Environmental Review for Proposed Fly Ash Dredge Ponds" (copy attached)

After review of the referenced memorandums, we request that you begin work on all items immediately. Internal Service Agreements for each work group will be approved upon receipt as discussed between John Albright, of this division, and Sherry Murphy, of the Division of Air and Water Resources. The revised scope of work for Paradise in reference 2 is appropriate and brings the total amount for the EA to \$40,000 including overheads. The EA needs to be complete by the time the FY 1989 budget is submitted to the Board.

If you have additional questions, please contact Mr. Albright at extension 3505 in Chattanooga.

RECEIVED OFFICE OF PLANT MANAGER PARADISE FOSSIL PLANT Paul Wade CND: JTT: JGA: CDR Attachment ASST MGR cc (Attachment): OPER SUPV RIMS, LP 3S 127H-C MECH SUPV R. D. Yeargan, Paradise RESULTS SUPV Joe L. Currie, LP 3S 63H-C SAFETY ASST MGR ENGR ASST MGR WP OPER SUPV WP MECH SUPV WP RESULTS WP ADMI: SUPV FILES PLANT MGR **ANSW** BY DATE

John
6-7-88

Please review
fhandle it you
Approve

G. Leon Massey, Supervisor, Waste Planning, BR 2S 108B-C

Wally Carpenter, Project Manager, Engineering Laboratory, ENG LAB-N

June 6, 1988

JOHNSONVILLE AND PARADISE FOSSIL PLANTS - ENVIRONMENTAL REVIEW FOR PROPOSED FLY ASH DREDGE PONDS

Per your request to Wally Carpenter, the proposals to develop a data base and prepare a detailed evaluation of impacts to groundwater resources at these two plants has been revised. We understand these revisions were necessary to complete the environmental reviews more quickly and that additional data, where needed, will be obtained in the design phase. Attached are revised proposals including cost estimates to complete work activities.

Funding of the activities for each of the listed organizations needs to be set up very quickly if these activities are to be completed by July. Attached is a list of contacts for each organization requiring funding. By copy of this memorandum, the Engineering Laboratory requests each of these organizations to review the revised scope of work activities and funding allocated for adequacy. Please contact Wally Carpenter at 632-1883 if you have any questions regarding these projects.

Wally Carpenter

WGC:TSM Attachments

cc (Attachments):

David J. Anderson, LA PSC 1-C

Herbert Barnard, Jr., T218 NFDC-M

Charles E. Bohac, 270 HB-C

Lora M. Dawson, 200 HB-C

John L. Furgurson, 143 EB-K

Donald L. Malone, 200 HB-C

Dennis L. Meinert, EDB-M

Sherry T. Murphy, 114 EB-K

Sandra S. Robertson, 293 HB-C

John L. Rose, Jr., LA PSC 1-C

Phyllis M. Russell, 2F 69 OCH-K

Robin M. Scheib, T109ANFDC-M

Lisa A. Stinson, 108 EB-K

David M. Varnell, 150 401B-C

Prepared by Wally Carpenter

ATTACHMENT 1

Tennessee Valley Authority
Office of Natural Resources and Economic Development
Division of Air and Water Resources
Engineering Laboratory

JOHNSONVILLE FOSSIL PLANT

ENVIRONMENTAL ASSESSMENT FOR PROPOSED DREDGE POND

Report No. WR28-3-30-102

Prepared by Wallace G. Carpenter

Norris, Tennessee May 1988

EXECUTIVE SUMMARY

The Engineering Laboratory proposes to provide a groundwater assessment to describe possible effects of the development of a new dredge pond for fly ash disposal at Johnsonville Fossil Plant. Background conditions will be evaluated, site properties characterized and design options evaluated, to determine if impacts to local groundwater may occur. Based upon the information obtained, an environmental assessment (EA) will be provided describing any suspected impacts to groundwater and mitigative measures that may be necessary.

JOHNSONVILLE FOSSIL PLANT ENVIRONMENTAL ASSESSMENT FOR PROPOSED DREDGE POND

INTRODUCTION

The Johnsonville site contains soils of unconsolidated alluvial and terrace deposits consisting of sand, tan clay, and gravel. These deposits range in thickness from 0 to 32 feet across the site. Geologic formations underlying the terrace deposits include the Fort Payne Chert, Chattanooga Shale, and Camden Chert. The Mississippian regional aquifer and the Devonian-Ordovician regional aquifer are known to be in the area with the latter most likely to be affected by TVA ash disposal facilities. This aquifer is in the Camden Chert which in some locations is protected by the Chattanooga Shale (a nonwater-bearing unit).

In order to determine the potential impact of the proposed dredge pond, the existing groundwater quality, and site soils will be evaluated. The regional groundwater flow patterns will be defined to the extent possible. The anticipated ash leachate composition will be estimated and the local attenuation zone will be characterized.

Assessment

The following approach will be used to complete the assessment:

- 1. Groundwater hydrology and chemistry data from existing wells will be reviewed. Offsite well locations will be identified and if possible groundwater data will be obtained from these wells.
- Soil characteristic will be examined, some boring have been conducted at the site and some hydraulic data are available.
- Chemical composition of ash samples will be determined and leachate test of the dredged ash will be performed. The data obtained and other literature data will be used to predict leachate quality.
- 4. Design features of the proposed dredge pond will be evaluated to determine the potential of leachate to migrate into the groundwater. Details of the proposed design will be needed from Fossil and Hydro Power.

5. Based on the waste characterization, soil properties, site groundwater quality, regional flow conditions, and proposed design features the WQB and ENG LAB will predict the potential for leachate migration into the groundwater. The assessment will provide a basis for determining potential groundwater impacts and design considerations necessary for ash disposal on the site.

Detailed modeling which would predict specific groundwater flow and the direction and amount of leachate flux including attenuation processes would not be a part of the assessment phase although it could be considered for the design phase.

Cost

Following is a cost breakdown for the proposed activities:

Organization/Activity		<u>Cost</u> a
Field Operations/ Collect ash (2 samples) and groundwater samples (3 samples)		2,500
Central Laboratory Services Branch/ Ash elemental analysis (3 samples)		900
Chemical Research Branch/ Soil mineral analysis (2 samples)		1,100
Mapping Services Branch/ Develop site maps		1,320
Laboratory Branch/ Water quality analyses Ash extractions (3 samples)		780
Water Quality Branch/ Groundwater quality evaluation Leachate attenuation analyses		7,300
Engineering Laboratory - Project Management Geohydraulic evaluation Leachate migration analyses Design evaluation		11,700
	Total	25,600

a. Cost estimates are total, direct plus indirect.

ATTACHMENT 2

Proposal for Paradise Fossil Plant Environmental Assessment - Water Resources

Although groundwater quality at the Paradise reservation is generally believed to be uniformly poor, the potential charges in groundwater quality resulting from the proposed fly ash dredging activity for the three sites being considered for development will be evaluated. Available water quality data will be examined to describe the groundwater resources of the areas. Topography of the three areas will be evaluated to attempt to ascertain general groundwater movements. Leachate data will be examined to evaluate the impacts to groundwater for the three sites.

Cost estimates for these activities are as follows:

Organization/Activity		<u>Cost</u> a
Field Operations/ Collect ash (3 samples) and groundwater samples (4 samples)		3,700
Mapping Services Branch/ Develop site maps		2,700
Laboratory Branch/ Water quality analyses Ash extractions		1,040
Central Laboratory Services Branch/ Ash elemental analyses		900
Water Quality Branch/ Water quality assessment		4,000
Engineering Laboratory/ Hydrogeologic assessment		4,000
	Total Direct	16,340

a. Cost estimates are total, direct plus indirect.

1300 + 3600H = 1860 total for Arch.

सम्ब 64 (ÖS-9-65) UNITED STATES GOVERNMENT

Memorandum

1 - 640831 147

TENNESSEE VALLEY AU

TO

Paul Wade, Director of Fossil and Hydro Power, LP 3S 58K-C

FROM

DATE

Jon M. Loney, Assistant to the Manager (Environmental Matters and Program Support), Office of Natural Resources and Economic Development, 1053 March 30, 1988

SUBJECT:

PARADISE FOSSIL PLANT - ENVIRONMENTAL ASSESSMENT (EA) FOR A FLY

M62 871118 804

As requested in your November 30, 1987, memorandum, the Office of Natural Resources and Economic Development has prepared the following workplans and cost estimates for the work necessary to collect data and prepare the

ARCHAEOLOGY/WILDLIFE/WETLANDS

Activities: All three sites under review for a fly ash dredge pond are within areas previously disturbed by mining activities; therefore no archaeological impacts are anticipated. Those areas, however, especially numbers 1 and 3, contain strip mine ponds which have supported the development of wetlands. In this otherwise degraded environment, with vast denuded areas interspersed with patches of ruderal species, these ponds and wetlands are biologically rich, as measured by biomass and species diversity. It has been TVA's practice since 1979 to protect these areas to the extent practicable from adverse impacts. A field inspection will be conducted to determine wetland status, i.e., size, function, and importance. Based on this data, we will then determine whether the proposed project impact would be acceptable or nonacceptable. In previous wetlands assessments of the Paradise area, we have generally concluded that in most cases the loss of wetlands, although serious, is unavoidable. We expect our findings will be similar for the three

Cost: Field survey and writeup of results: Four man-days \$1,300

WATER RESOURCES

Activities: Although groundwater quality at the Paradise reservation is generally believed to be uniformly poor, the potential changes in groundwater quality resulting from the proposed fly ash dredging activity for the three sites will be evaluated. The possibility of a water quality gradient at the Paradise site such that one of the sites might have groundwater of higher quality than the other sites will be evaluated. The proposed dredge ponds might affect existing groundwater and surface water flow patterns, possibly further degrading either of the two. For these reasons, groundwater aspects should be investigated prior to the

Paul Wade March 30, 1988

PARADISE FOSSIL PLANT - ENVIRONMENTAL ASSESSMENT (EA) FOR A FLY ASH

Wells exist in the area of site 2. No wells exist in the areas of sites 1 and 3. Therefore, it is proposed that a well be drilled in each of the areas of sites 1 and 3. Water quality samples will be taken and analyses performed for new wells at sites 1 and 3 and for one of the existing wells near site 2. The water quality data and a review of the drilling records for as many of the existing wells as possible will be used to assess the relative quality of the water and the ability to attenuate leachate beneath the three sites.

Water level readings from as many of the existing wells as possible will be obtained. This water level information will be used to assess the general groundwater flow patterns at the site. Cost:

Mapping services	,
Drilling wells	\$ 2,000
Logging wells	10,000
Sampling wells	2,000
Laboratory analysis	2,000
"Julokeologic agg-	2,000
Water quality assessment	3,000
Total	3,000
	\$24,000

FISHERIES

The evaluation of the direct impact of fly ash dredging on fisheries at the three sites and preparation of the fisheries portion of the EA will involve site visits, examination and evaluation of existing data for the area, fisheries surveys (net and seine studies and electrofishing), and project meetings.

Fisheries and Aquatic Ecology Branch--Preliminary site evaluation, examination and evaluation of existing data (where available), meetings with the Divisions of Fossil and Hydro Power and Services and Field Operations, and preparation of the fisheries section of the EA.

Division of Services and Field Operations--Approximately two man-weeks of effort sampling the fish fauna at site 1. This will include experimental gill nets, seines, and electrofishing surveys, if feasible. Cost:

Fisheries and Aquatic Ecology Branch Division of Services and Field Operations Total	\$12,000 6,000
	\$18,000

Paul Wade March 30, 1988

PARADISE FOSSIL PLANT - ENVIRONMENTAL ASSESSMENT (EA) FOR A FLY ASH

AIR QUALITY

No survey work is required for the air quality review. of a workplan the following assessment is provided for inclusion in the Therefore, instead

Construction of the proposed dredge pond will result in temporary fugitive dust emissions from clearing and grading during site preparation. Gasoline and diesel fueled equipment and vehicles used in construction will emit minor amounts of combustion pollutants, such as particulates, carbon monoxide, and nitrogen oxides. If debris cleared from the site is disposed of by open burning, additional small amounts of particulates and carbon monoxide will be released. Any open burning will be conducted in accordance with applicable State

Air quality impacts during operation will depend on the method of disposal. Material will be hydraulically dredged and conveyed to the new pond by pipe. Any air emissions from transport will be negligible. If either area 1 or 3 is chosen, all material will be handled and ponded wet. Fugitive dust from such operations will be minimal. If area 2 is chosen, stacking will be necessary. Material in the disposal pile will initially be wet. As necessary, the pile will be wetted to reduce dust emissions. Surfaces will be revegetated as soon as practicable, and the active area of the pile will be kept as small as possible to further reduce dust.

With proper mitigation, this project should not significantly

FLOODPLAIN

No survey work is required for the floodplain review. Therefore, instead of a workplan the following assessment is provided for inclusion in the

Sites 1 and 2 are subject to flooding from Jacobs Creek. 1-percent-chance (100-year) and 0.2-percent-chance (500-year) elevations on Jacobs Creek at the sites are 404 and 407 respectively. Site 3 is subject to flooding from the Green River with 1- and 0.2-percent-chance flood elevations of 403 and 406 respectively. Therefore, all three of the candidate sites are located outside the limits of the identified

Paul Wade March 30, 1988

PARADISE FOSSIL PLANT - ENVIRONMENTAL ASSESSMENT (EA) FOR A FLY ASH

1-percent-chance (100-year) and 0.2-percent-chance (500-year) floodplains and would therefore be consistent with the requirements of Executive Order 11988 and TVA's floodplain management policy. Normal site drainage practice would be followed in providing drainage from the local site area.

FMM: ADR

cc: Files, ONRED, SE45 OCH-K

R. T. Allen, 2F73 OCH-K

J. L. Furgurson, 143 EB-K

Prepared by Frederick M. Massingill

4228D

RECEIVED OFFICE OF PLANT MANAGER PARADISE FOSSIL PLANT ASST MGR OPER SUPY MECH SUPV RESULTS SUPV SAFETY ASST MGR ENGR ASST MGR WP OPER SUPV WP MECH SUPV WP RESULTS WP ADMN SUPV FILES FLANT MGR ANSW BY DATE

UNITED STATES GOVERNMENT

Memorandum

A60 890224 003 TENNESSEE VALLEY AUTHORITY

TO

M. Paul Schmierbach, Manager of Environmental Quality, SPB 2S 201P-K

FROM

Ruffner, Manager of Environmental Affairs, LP 3S 39F-C

DATE

SUBJECT:

PARADISE FOSSIL PLANT - JACOBS CREEK ASH POND - DREDGE POND ENVIRONMENTAL

This is in response to your subject memorandum to W. H. Thompson dated January 6, 1989 (A60 890210 006). Attached is a copy of the final EA which has been revised to reflect changes agreed to between our staffs

GGP: ECM: AJH Attachments

cc (Attachments):

RIMS, MR 4N 72A-C

Dennis Allen, Paradise

E. S. Christenbury, ET 11B 33H-K

R. L. Moates, BR 2N 75A-C

W. M. Pearse, BR 4N 40A-C

W. H. Thompson, LP 3S 58K-C

2509k

DRAFT ENVIRONMENTAL ASSESSMENT

DEVELOPMENT OF DREDGED ASH DISPOSAL AREA PARADISE FOSSIL PLANT

Introduction

Paradise Steam-Electric Plant (PAF) is a 3-unit, 2,558-MWe coal-fired facility in Muhlenberg County, Kentucky. The plant is located on the west bank of the Green River at Green River Mile 100.5. Construction for units 1 and 2 began in November 1959, and commercial operation begin in May and November 1963. Each of these units has a nameplate rating of 704 MWe each. In February 1970, unit 3 was accepted for commercial operation. Fly ash from this plant is sluiced to a settling pond, with supernatant discharged at an average flow of 53.19 cfs to Jacobs Creek, a small tributary of the Green River.

This project is to construct a dredge pond near the Jacobs Creek ash pond capable of storing at least 1x10⁶ cubic yards of fly ash dredged from the ash pond. This will provide approximately 10 years of additional fly ash storage in the fly ash pond. Effluent from the dredge pond will be returned to the Jacobs Creek ash pond for discharge to Jacobs Creek.

Approximately 245 acres of land will be purchased under this project for the dredge pond although the pond itself will constitute only about 50 acres. Construction is expected to begin in June 1989, and dredging in February 1990. Based on the latest pond volume survey and forecasted operation, Paradise would be without fly ash storage space in November 1990 without this project.

This assessment is to evaluate the environmental consequences associated with the purchase and development of a new offsite area for dredged ash disposal at PAF.

Alternatives Considered

The selection of an environmentally acceptable disposal alternative was based on the following criteria:

- 1. A storage volume equivalent to a minimum 1x10 cubic yards.
- 2. The proximity of the site to the active ash pond.
- 3. The cost of site development and operation.

4. An area that has favorable physical properties for ensuring no significant impacts to the environmental resources, including groundwater, surface water, biota, and cultural resources.

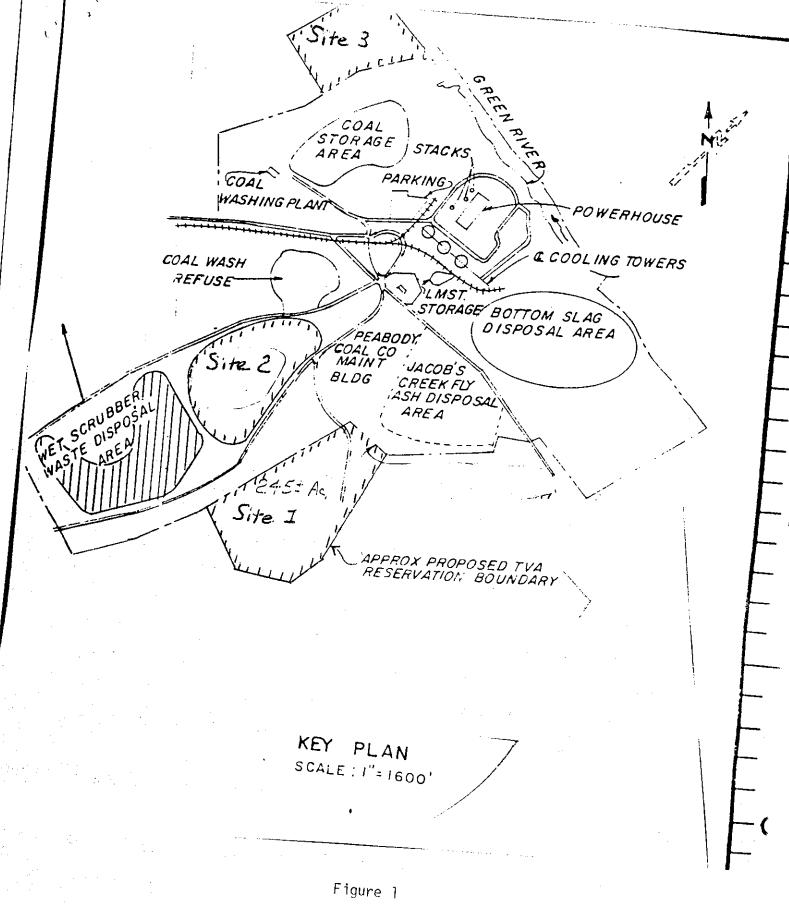
In the selection of a site for development of additional ash disposal, the following alternatives have been considered.

Alternative 1--Construct two dredge cells in the old scrubber landfill

Under this option two small dredge cells would be constructed in the old scrubber landfill area. Each cell would be filled three times by dredging. Each area would be reclaimed twice between dredgings by dewatering the ash and stacking the reclaimed ash on high ground in the old scrubber landfill. The total costs associated with this option are \$3,932,131. This is the highest cost option because of the high costs associated with reclaiming ash and moving it to other areas between dredging operations.

Alternative 2--Construct two dredge areas, one in the old scrubber landfill area, the other on an additional 245-acre tract.

Under this option dikes would be constructed in the old scrubber landfill area sufficient to contain 331,000 cubic yards of dredged material. In addition, a 245-acre tract of land would be purchased. This area would


be developed to contain the balance of 669,000 cubic yards of dredged material on 50 acres of the site. The total costs associated with this option are \$2,692,000. The costs associated with this option are less than for alternative I because the ash would not have to be moved from the dredging areas to other areas for permanent disposal. However, this option is higher in cost than alternative 3 because of the need to construct more diked areas.

Alternative 3--Develop one dredged ash disposal area.

Under this option, three potential sites were considered (see figure 1). The preferred site is on a 245-acre tract of land which would be purchased. Dikes capable of storing the entire 1 million cubic yards of material to be dredged would be constructed to contain a 50-acre dredge pond. This is the least investment alternative and is the proposed project. The total costs associated with this option are \$2,389,000. This option is less costly because there is no need to reclaim and haul ash to other areas for permanent disposal and it is more economical from a construction standpoint to develop one larger area than two small areas.

Alternative 4--No action

The no action alternative is infeasible because free water volume must be restored in the ash pond if the plant is to continue uninterrupted operation. Paradise Steam Plant is one of TVA's largest and most reliable plants and is essential to base load operation.

PARADISE FOSSIL PLANT CONSTRUCT DREDGE POND AND DREDGE ASH POND

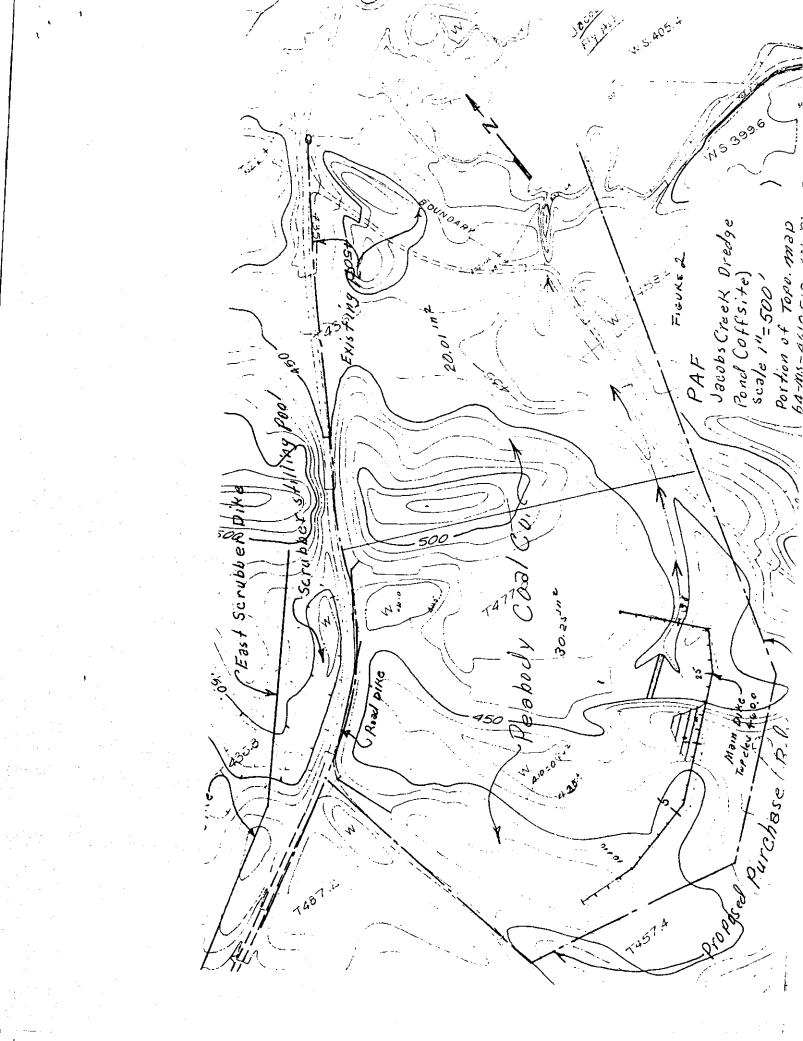
Potential Sites Considered

Site 1—Although the total acreage of this site is a little larger than each of the other two sites considered, site 1 would require development of the smallest area for the dredge pond. This site consists of land that was previously strip mined and has been reclaimed leaving a small pond of approximately 3.4 acres surrounded by open grassland. Part of this area is a depression bounded by hills or ridges about 50 feet in elevation along two sides and would require much less diking for construction of the 50-acre area to contain the desired dredge volume. Although this land is not currently a part of the TVA reservation, one of the two owners has indicated a willingness to sell approximately 169 acres of the 245-acre tract required by TVA.

Site 2--This area is a 140±-acre site west of the Jacobs Creek ash pond which was used for a short time for stacking of scrubber sludge wastes. It consists of previously mined lands which were reclaimed and is now open grassland. Two small hollows were left in the area which contain small ponds. This area was discussed in a previous EA for development of coal-wash refuse and scrubber sludge disposal areas. The area is on a fairly flat elevation about 100 feet above the ash pond elevation and would therefore require much more diking than the other two areas considered in order to contain the ash volume to be dredged in this project.

Site 3--This $100\pm$ -acre area is at the northern boundary of the current reservation adjacent to the Green River. It consists primarily of mined land which has been reclaimed. Strip mine pits in the area were left as part of the reclamation process. This area was considered in a previous EA for use as a permanent coal-wash fines refuse and dredge material disposal area. At that time the lake had already been partially filled with dredge materials from construction of a nearby coal barge docking facility. The area is currently used for disposal of miscellaneous dredged materials when required. Although development of this area would not require a great deal of diking to contain the desired volume of dredged ash, use of this area is complicated by other factors. Its remote distance from the active ash pond and its location on the other side of the plant would make it very difficult and costly to construct dredge lines to this site. It would also be difficult or impossible to reroute dredge pond return flow back to the existing ash pond. It is uncertain whether the water from this pond could meet NPDES permit limits enabling it to be discharged directly to the river without further

Preferred Alternative


Based on consideration of the engineering and economic factors discussed above, the preferred alternative is to construct the 50-acre dredge settling pond on site 1. This site will be purchased by TVA and developed for the disposal of 1×10^6 cubic yards of dredged ash. Dikes

will be constructed from the best locally available material based on soil tests, probably obtained from a borrow area in the nearby scrubber stacking area. The top of the dikes will be at 460 feet of elevation (see figure 2). This area now drains toward upper Jacobs Creek. Return flow from dredging will be routed back to the ash pond and will flow by gravity through the existing natural drainage for the area adjacent to the preferred site. Diking will prevent flows into the upper Jacobs Creek area.

Upon completion of construction, piping will be assembled from the ash pond dredge to the dredge area. The estimated time to complete the dredging of 1×10^6 cubic yards of ash from the active ash pond is approximately ten months. After completion of dredging the ash would be allowed to dewater and the area would be contoured to promote natural rainwater runoff. The ash will then be covered and seeded in accordance with State closure requirements. Appropriate erosion control features will be included in the design to allow for an environmentally acceptable final closure.

Completion of this project will restore approximately 10 years of storage volume to the active ash pond.

Consideration of the environmental factors associated with the use of the three areas considered is discussed in the following sections.

GROUNDWATER QUALITY ASSESSMENT

Introduction

Paradise is located on the western bank of the Green River in Muhlenburg County, Kentucky. The area is underlain by Pennsylvanian Age sandstone and shales. The plant area is unique in the TVA system in that approximately half of the land surface is covered by spoil from surface strip mining of coal. Overburden in these areas consists of up to 75 feet of spoil composed of sandy, gravelly clay, mixed with rock fragments. In unmined areas remaining around the plant, an average of 15 feet of unconsolidated materials overlie the bedrock. This original unconsolidated overburden consists of terrace deposits, alluvial clays and silts, and residuum.

Groundwater at Paradise occurs in the fractures of the fine- to coarse-grained sandstone of the Pennsylvanian Age under semiconfined conditions. The only significant water-bearing units within the Pennsylvanian Age regional aquifer are the Lisman Formation and the deeply buried Caseyville Formation. Coal-stripping operations have removed the Lisman Formation in most of the upland areas. Where sandstone units of the Lisman Formation exist they receive direct infiltration and are susceptible to contamination from the surface. The Caseyville Formation has a potential for high well yields; however, since this aquifer occurs at considerable depth there is little likelihood that it will be developed.

Existing Groundwater Data

Table 1 shows mean values for parameters monitored in 1981, 1982, and 1983 from wells at the Paradise site. Figure 3 shows the locations of the monitoring wells. A review of the data shows iron and manganese concentrations are very high for some of the wells compared to the Drinking Water Standards (DWS), but concentrations could be elevated because of the metal casings used for some of the wells. Groundwater quality has been degraded at Paradise as indicated by the high concentration of residue, calcium, sulfate, and conductivity in table 1. In addition, the pH of all the wells was outside the DWS range of 6.5 to 8.5.

Figure 4 compares the composition of the well samples on the basis of equivalents (concentration/[atomic weight x valence]). The equivalent concentration of cations should equal the equivalent concentration of anions (the heights of the bars in figure 4 should be equal). Part of the discrepancy between anions and cations observed in figure 4 is because the iron and manganese concentrations were neglected. Some of the wells were cased with metal pipe and, therefore, the metals data in some wells might be unreliable. The comparisons of figure 4 are, therefore, based on the mineral content of the samples excluding iron and manganese.

Figure 4 shows that calcium generally is the predominate cation in most wells although magnesium constitutes a slightly larger portion of the cations in well B5 than the rest of the wells. Sulfate is the predominate anion followed by the carbonates in all the wells.

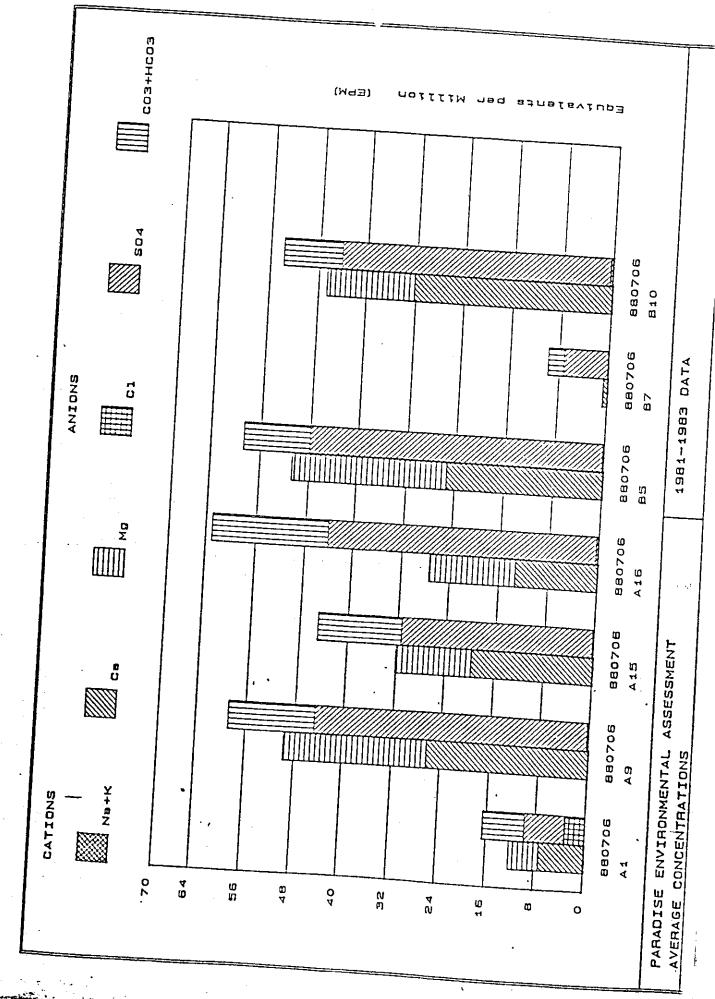
Table 1 <u>Paradise Groundwater Quality</u>

590 3,300 4,200	
1	
Residue 1,100 3,500 3,500 3,500 3,567 2,600 3,400 5,00 49 110 <10 6 54 56	.5 56 0.4 85
2, 136 2, 136 1, 500 2, 130 2, 100 2,	41 100 10 100
Sb All 1990 11.7 1900 11.7 1900 19	70 <50
Hg mg/L 6.1 80 289 289 150 175 175 175 175 175 175 175 175 175 175	. 000's
Ca 230 527 450 397 270 527 527 527 520 520 520 520 52 500 14 2.260 13 1.367 9 2.260 127 500 127 500 127	
Fe Pb 13, 300 1.3 27,000 12,000 12,000 12,000 13,000 12,000 13,000 12,000 13,00	
510 units 6.0 6.0 6.1 6.2 6.2 6.3 6.3 7.0 6.5-8.5 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3	
Conductivity 1,017 1,700 3,357 3,320 3,320 3,320 3,320 3,320 3,320 3,320 3,520 3,520 3,673 2,500 5,40 80 80 80 243 8 80 80 80 80 80 80 80 80 80	000.
A1 (8/88) A9 (8/88) A9 (8/88) A16 85 B10 Pond B (8/88) B10 Pond B (8/88) A16 85 A16 85 A16 85 A16 85 B10 Pond A B10	50

PARADISE FOSSIL FUEL PLANT

CONTOUR INTERVAL 10 FEET DASHED LINES REPRESENT HALF-INTERNAL CONTOUR

Plant site area revised from aerial photography dated July 1985


Figure 3

WELL SITES

O Sampling Wells △ Monitoring Wells

All wells not useable at present for sampling.

Compiled by Mannin

Well Al is somewhat different from the rest of the wells in that chloride, sulfate, and bicarbonate all contribute about equal amounts to the anion total. Wells Al and B7 are distinct from the rest of the wells in that the residue (TDS) concentration is much lower than the rest. This is indicated by the shortness of the bars in figure 4. Well B7 is distinct from all the other wells in that its pH was 10 while the pH of all the rest of the wells was approximately 6.

Additional groundwater data were collected to confirm the discussion above. These data are also shown in table 1. Wells A1 and A9 were sampled as well as two ponds. Pond A is the pond found at Site 3 while Pond B is the pond at Site 1. The August 1988 data for Wells Al and A9 compare within the order of magnitudes established during the 1981-83 period with the exception of Mg and Ba in well Al and Ba and Fe in well A9 indicating the water quality at these two locations has been relatively stable. The pond data are of interest because they lie within the ranges of the well data. This indicates that, with the exception of iron and zinc, the well data are probably reliable. However, the 1988 analysis showed that cadmium was higher than the DWS in wells Al and A9. The cadmium levels in the ponds were below the DWS. This suggests that the cadmium in the groundwater is already high. The lower cadmium levels in the ponds might be the result of the oxidizing conditions provided by the exchange with the atmosphere or simply a cadmium concentration gradient in the groundwater under the plant site. Further data will be needed to determine whether cadmium is naturally occurring in the strip

mine areas. Although the casings possibly increased the iron and zinc concentrations for some of the wells (Al and A9 in particular) the pond data indicates that iron concentrations in the groundwater are indeed high. The pond data also confirms that the groundwater beneath the plant site is generally of poor quality.

Groundwater Hydrology

Groundwater occurs on the Paradise site in the Lisman Formation where present and in the spoils remaining from strip mine operations. The Lisman Formation in the vicinity of the plant has been disturbed to the point that it is not considered usable as a water source. The deeper Caseyville Formation is expected to receive little use because of its depth and is not of concern in this evaluation because low permeability formations exist between it and overlying groundwaters.

Groundwater found in the upper strata is derived from local precipitation and generally conforms to topography. Depth to groundwater in the wells located on the site range from 6 to 22 feet below surface. There are numerous ponds and lagoons (many are abandoned strip mine pits) in the area that are directly influenced by the groundwater. Several TVA ponds also influence groundwater elevations and local groundwater movement patterns. Groundwater gradients in the plant site areas indicate movement is toward the Green River and Jacobs Creek drainage basins.

Proposed dredge pond sites 1 and 3 are abandoned strip mine pits. The water in these ponds is believed to be in direct connection with area groundwater.

Leachate Quality

The expected quality of leachate from the dredged ash was estimated in three ways.

The first estimate was based upon an EP Toxicity Test performed on a composite of three samples obtained from the existing fly ash pond. The EP Toxicity Test is an extraction performed over 24 hours at pH 5. The results from the composite sample are shown in table 2. If the fly ash extract were to exceed the maximum concentration shown in table 2, it would be classified as a hazardous waste. Table 2 shows the fly ash to be nonhazardous.

The second estimate of leachate quality was obtained from an examination of the ash pond effluent quality shown in table 3. Table 3 was based on data collected during the period 1973 to 1974 and 1985 to 1988 and is presented to show the typical concentration ranges.

Because the ash pond effluent is more oxidized than the leachate, the ash pond effluent concentrations will be lower for most species. Even so, a review of data for the period 1976 through 1980 indicated the ash pond concentrations of cadmium, iron, and manganese exceeded the DWS during

each of the five years. The EP Toxicity extract shown in table 2 also shows cadmium above the DWS. Table 3 also shows the ash pond water to have been of very low pH in 1973-74, lower than the pH 5 which is the basis for the EP Toxicity Testing. Solubility of most metals generally increases with lower pH. For example, the pH of the ash pond has risen significantly since the mid-1970s primarily due to diversion of the bottom ash pond discharge into the fly ash pond. As a result, several of the metal concentrations in the 1985 to 1988 period are observed to be less than in the period 1973 to 1974. It is uncertain whether the pH of the leachate will reflect the acidic nature of the ash pond characteristic of the mid-1970s or the more neutral pH of the mid-1980s. Generally, however, the pH at the bottom of ash ponds where the leachate originates is lower than the ash pond discharge. Acidic conditions could result in the leachates from the dredge pond that contains some metal concentrations in excess of the DWS. In order to determine how the dredged ash will behave, data will be collected from an interim internal dredge cell within the ash pond which will be conducted during November and December of 1988.

Table 2

EP TOXICITY TEST RESULTS - PARADISE

FLY ASH COMPOSITE

A third estimate was derived from an analysis of the elemental composition of the ash itself. The elemental composition of the ash composite sample taken from the ash pond (table 4) was used as input to a prerelease version of FOWL (Fossil-Fuel Waste Leachate Computer Code) to generate an estimate of leachate quality. FOWL is the Electric Power Research Institute's computer code which calculates the quantities, aqueous concentrations, and release durations of selected inorganic elements leached from fossil fuel wastes. The code uses a thermodynamic approach to calculate the aqueous concentration of elements which are in equilibrium with the solid phase of the elements in the fly ash matrix. Table 5 shows the predictions made by FOWL for a pH range of 4 to 8 which is the pH range of the ash pond over the past 15 years.

Table 3

PARADISE FLY ASH POND EFFLUENT CHARACTERISTICS

No. was		- WOLCHTOIL	<u>.5</u>
<u>Paramete-s</u>			
F1	<u>Minimum</u>	A	
Flow, gai/min		Average	Maximum
Alkalinity, phenol, mg/L as CaCO3	3,10	Λ.	
Conductivity, pmhos/cm		6,212.	5 8,800
Mardness total	61		11
pH, std. units CaCO3	18:	۱۵ م	
SUITES tisening			1,125
	3.6/6.3	<u> </u>	. 520
	14]	5115	6.3/8.4
Annonga To /I as u	3 6 4 3 2	63.6	820
*** 3CH (C. MA)	3.6/.12	7.27.20	430
odrjum, zazi	0.02	0.43	0.87.76
Dery [] [mg / [<0.005/.002	0.010/.004	1.4
Cadmium, mg/L	0.2	0.3	
Calcium, mg/L	0.01	0.01	0.4
Chloride, mg/L	0.023/<.001	0.037/.004	0.02
Chromium, mg/L	94	136	0.052/.008
Copper, mg/L	5	. 7	180
Cvanido	0.012/.004	0.067/.002	14
Cyanide, mg/L	0.16/.009	0.31/.012	0.17/.001
Iron, mg/L	<0.01	<0.10	0.45/.009
Lead, mg/L	0.33/.001	1.44/.950	<0.01
Magnesium, mg/L	<0.01	0.06/.001	6.6/5.2
igilaquess maxi	9.4		0.2/.003
HELCOPY BOX	0.29/.047	0.497.22	20
MICKEL 70/I	<0.0002	0.48/.29	0.63/.52
Phosphate, total, mg/L as P	0.06/.004	0.0003	0.0006
Selenium, mg/L as p	<0.01	1.1/.026	0.13/.062
SINCA, mazi	<0.001	0.02	0.06
Sliver, 5071	10	0.002/.005	0.004/.012
Sulfate may	<0.01	12.6	15
Zinc, mg/L	240	<0.01	<0.01
	1.1/.01	358	440
	,	1.51/.042	2.7/0.12

Single values are data from the 1973 to 1974 period. Values above the slash are from the 1973 to 1974 period. Values below the slash are from the 1985 to 1988 period.

Table 4
PARADISE ASH ANALYSIS

Element		Composition (mg/kg)		
A1	3	129200.000		
Ва	=	380.000		
Ca	=	11100.000		
Cr	=	190.000		
Мо	=	38.000		
Si	=	221100.000		
Sr :	=	170.000		
S =	:	800.000		
As =	•	107.000		
В =		513.000		
Cd ≃		5.000		
Cu =		150.000		
Fe =	1	66900.000		
Mg =		5100.000		
Na =		3000.000		
Ni =		120.000		
Se =		5.000		
Zn =		440.000		

Composite of three samples taken from Paradise fly ash pond in July 1988.

Table 5
FOWL LEACHATE CONCENTRATIONS PREDICTIONS

Constituent	<u>DWS</u>	Leachate Concentration			
<u>DNS</u>	<u> 2110</u>	pH = 4	pH = 6	8 = Hq	
Al, μg/L		4000		<u></u>	
Ba, μg/L	1000	4037	149	822	
Ca, mg/L	1000	254	253	253	
Cr, µg/L	50	395	394	394	
Mo, µg/L	50	40	2		
Si, mg/L	•	1879	679	2	
Sr, µg/L		26	26	672	
SO ₄ , mg/L		1624	1616	27	
As, μg/L	250	960	945	1620	
B, μg/L,	50	109	99	945	
Cd, µg/L		2856	3907	99	
Cu, µg/L	10	34	2	5343	
	1000	244	4	2	
Fe, µg/L	300	511	=	4	
Mg, mg/L		. 8	21	5	
Na, mg/L		8	2	1	
Ni, μg/L		197	11	14	
Se, µg/L	10	1	13	9	
Zn, μg/L	5000	747	41	104	
TDS, mg/L	500	772	10	10	
		. 114		761	

FOWL predicts the highest concentrations of most elements at pH 4 and the lowest at pH 8. The exception is selenium which increases with pH and shows the potential for exceeding the DWS at the higher pH's. FOWL suggests that strontium concentrations will exceed 1 mg/L which is confirmed by the well and pond data shown in table 1 in the EA.

No field data exist to compare to the FOWL predictions for molybdenum and boron both of which are predicted to exceed 1 mg/L. FOWL also indicates increased cadmium concentrations at the low end of the pH range. Should leachate pH be more near 6 than 4, cadmium concentrations should not be elevated. Although FOWL predicts arsenic concentrations in excess of the DWS, FOWL is not very useful for predicting concentrations below 100 µg/L and therefore its arsenic estimate should be discounted.

Ranking of Alternative Sites

Although the groundwater is of poor quality across the site, areas near wells Al and B7 are probably where water quality has been degraded the least. However, the water quality even in these areas is inferior to river water quality and, therefore, would not likely be developed as a water supply source.

Because the ash leachate will likely contain elements which will exceed the DWS, attenuation of the metals such as cadmium through adsorption or precipitation would be desirable. Adsorption would be facilitated if

some soil separated the bottom of the dredge pond from the groundwater. Precipitation would be facilitated if the pH of the leachate could be raised.

Proposed sites 1 and 3 would offer no potential for attenuation if wastes were discharged directly into the existing ponds because the fly ash would be in direct contact with the groundwater. There would be no soil to adsorb some of the metals in the leachate and the pH would be expected to remain low, thus removing the potential for much precipitation.

Site 2 could more easily be constructed with soil between the pond bottom and the groundwater. In addition, the groundwater near site 2 is high in pH and the nearby wet scrubber sludge area is also expected to have an elevating effect on the pH of groundwater beneath sites 1 and 2.

Therefore, leachate percolating into the groundwater at sites 1 and 2 might have its pH raised by the groundwater and this could help precipitate metals.

Control of dredge pond hydrology could also be accomplished on site 2.

Leachate flux rates to groundwater cannot be calculated without

site-specific data, but are estimated to be very large, several hundred
thousand gallons per year or greater. Because of precipitation, this
flux rate would continue indefinitely until the site is covered to
prevent infiltration. However, the dredge pond could be drained
following the dredging activity, thus substantially decreasing the
leachate flux to groundwater.

Conclusion

Groundwater resources in the Paradise area have been contaminated by strip mine spoil deposits and by onsite coal and waste handling. The degree of additional contamination that will result from development of a new fly ash dredge pond cannot be accurately determined; however, increased concentrations of several metals have been determined to be possible. Any impacts to groundwater will be localized, with increased fluxes to the Green River and/or Jacobs Creek.

Sites 1 and 3 are strip mine pits and are believed to be directly connected with area groundwater. These sites may be less desirable from an environmental standpoint unless specific design considerations are included to lessen groundwater impacts.

Site 2 is located in the Jacobs Creek drainage basin on a gentle slope. The bottom of the dredge pond could be developed above the groundwater table. Drainage of the dredge pond could be accomplished following dredge activities to reduce the flux of groundwater pollutants.

Jacobs Creek is largely comprised of flows from strip mine drainage and the active ash pond. Water quality of the creek is improving as stabilization of strip mine lands occur. Protection of groundwater quality and recharge to surface streams should be provided to the extent practicable.

SURFACE WATER

There is the potential for some adverse impacts to surface water quality from surface water runoff during the period of dredge pond construction. However, with the implementation of "Best Management Practices" (BMPs) to control surface water runoff, these impacts would be short term and relatively minor.

During operation, the use of BMPs to control surface water runoff from the exterior pond dikes would ensure that no significant surface water impacts result. Routing of the dredge pond discharges through the existing ash pond for subsequent discharges through the currently permitted ash pond outfall should not significantly alter the quality of the current ash pond discharges. The discharges of dredge pond waters in this manner would have no significant impact on the quality of the receiving surface waters.

Thus it can be concluded the construction and operation of the proposed dredge pond would have no significant adverse impacts on the quality of the surface water in the Paradise area.

AQUATIC ECOLOGY

Examination of available information for the region and an onsite survey showed lakes capable of sustaining fish populations at two of the sites and seepage ponds at the third.

Pond A (site 3) located adjacent to PAF on the north drains directly to the Green River. This lake has been partially filled with dredge spoil removed from the coal barge docking facility. Although approximately 40 percent of the original lake has been filled, the gentle contours of the area around the remaining portion of pond A make it attractive to local anglers. The remainder of pond A is bordered on the northwest by the proposed road which provides access to a proposed concrete launch ramp on the Green River. Surveys taken during June 1988 and in 1985/1986 showed the pond A fish assemblage (primarily bluegill and largemouth bass) to be limited in numbers and in poor condition.

Site 2 is located in an area already impacted by scrubber sludge. The entire area has been diked and recontoured from the post-mining land use plan in order to serve its new role. Fish surveys made in ponds at site 2 in 1981 showed a small pond assemblage typical of the region. However, most of these ponds have been removed; therefore site 2 would have the least fisheries impact of the three proposed areas.

Site 1 contains a teardrop shaped lake of about 1.4 ha (3.4 ac) area. Approximately 60 percent of the shoreline had dense stands of Typha, but with good access around the perimeter of the lake. The water was quite clear provided the deep substrate (>2 feet) was undisturbed. The central portion of the lake was over five meters in depth and free of submersed vegetation; whereas the edges had dense growth of Mirophyllum sp. (water milfoil).

Fish samples were collected using experimental gill nets, electrofishing, and hook and line capture. Seining was not attempted because of the soft deep substrate. The fishery in site 1 lake was comprised primarily of stunted largemouth bass and bluegill. The small size and poor condition of the largemouth bass highlighted the poor fishery. This condition may have been alleviated if local anglers could have removed some fish from the pond; however, this site is behind a locked gate.

In summary, the fishery at site 1 is limited primarily because there has been little or no exploitation of the stocked populations. This has resulted in stunted populations with poor recreational value. At site 2 there would be little fisheries impact. Site 3, although containing a limited fishery, does receive local fishing use. Because of the existing and potential for enhanced recreation and natural resource value of the lakes of sites 1 and 3, development of site 2 for the fly ash pond is preferable from the standpoint of fisheries impacts.

Because intermittent chronic toxicity has occurred in previous studies of ashpond effluent at Paradise Steam Plant, some level of toxicity could occur during the dredging project. The biota of lower Jacobs Creek could be impacted by low pH discharges or metals resuspended from sediments disturbed during dredging. However, significant adverse impacts to the biota of Jacobs Creek are not expected. To verify the no significant adverse impact assumption, TVA will conduct a 7-day static renewal

toxicity test using <u>Ceriodaphnia</u> and larval fathead minnows during the interim internal dredging operation and evaluate changes from baseline toxicity. If significant increases in toxicity are detected, recommendations will be developed for future work.

Additionally, previous studies showed that chronic toxicity was indicated for the 24-hour samples and this toxicity increased (although not linearly) with increasing retention time (there were no notable differences in routine chemical parameters). Due to possible differences between the laboratory-scale test and actual ash pond conditions, the time effect of dredging on toxicity of the ash pond discharge can best be determined in ambient conditions. Accordingly follow-up toxicity studies will be conducted upon completion of the dredging operation to evaluate the differences in toxicity resulting from the increased ash pond volume. If toxicity is identified, appropriate corrective action will be implemented as required by TVA's NPDES permit.

WETLANDS

A wetlands inspection was carried out at Paradise Fossil Plant to determine the status of wetlands known to exist on three areas proposed for a new fly ash dredge pond. Wetlands on these areas have changed very little since initial inspections were carried out in 1980. Ponds on all sites have remained in an open water condition. Submergent or floating-leaved aquatic bed wetlands which often evolve on ponds of this

type have not developed. Algae and aquatic moss have developed along certain areas of shoreline where sunlight penetration has encouraged the growth of some biomass. Wetlands that surround the ponds on all three sites are classified (Cowardin, et al., 1979) as:

System - Palustrine

Class - Emergent Wetland

Subclass - Persistent

Water Regime Modifier - Semipermanently Flooded

Other Modifier - Excavated

The major wetland species that have developed around these ponds are common reed (Phragmites communis), common cattail (Typha latifolia), and slender spike rush (Eleocharis acicularis). These are essentially the same species observed on these ponds the last eight years.

Ponds on any of the sites should not be considered rare, unique, unusual, or significant wetlands. They do, however, contribute to the wildlife resources of the area by providing habitat for migrant-wintering and resident waterfowl, shore birds, wading birds, and marsh birds. These ponds are also the most biologically active and productive parts of all three sites where the surrounding terrestial habitat is principally monotypic open grasslands.

In addition to wetlands which have developed around the ponds, other smaller wetlands have developed sporadically across each site.

Opportunistic wetlands have developed where topographic depressions, disrupted drainage ways, and constructed drain ways were created during the reclamation process. These small wetlands do not contribute to wildlife significantly but are important to the eventual recovery of disturbed habitat. These wetlands, like all wetlands on the site, are biologically healthy and contribute to higher quality runoff from each area.

Site 1: This is the smallest of all three sites selected for the fly ash dredge pond. The site contains an open water pond of approximately 3.4 acres, surrounded by open grassland. Emergent wetlands are present along the edge of the pond and along a small ditch that drains into the north end.

Development of site 1 will not impact any significant wetland habitats. There will be some loss of migrant-wintering waterfowl, shore bird, wading bird, and marsh bird habitat. There would also be some loss of resident Canada goose habitat.

Site 2: Site 2 is almost entirely open grassland with a small pond located on the north and west boundaries. Both ponds are less than one acre in size and support emergent wetlands along the shallow shoreline. The pond on the north boundary supports a good stand of slender spike

rush which is excellent waterfowl, marsh, and shore bird food. This is the only pond on the three sites where this particular wetland plant was identified. The two ponds on site 2 provide only very limited habitat for any wetland wildlife species because of their small size and the amount of present disturbance on and near the site.

Site 3: Site 3 contains the largest pond of the three areas. This pond, which is approximately 8 to 10 acres in size, supports emergent wetlands along most of the shoreline and provides habitat for migrant-wintering and resident waterfowl, shore birds, wading birds, and marsh birds. This pond is big enough and biologically productive enough to attract large numbers of these species. It appears to support a healthy food chain as evidenced by large numbers of aquatic invertebrates, reptiles, and amphibians and the evidence of heavy fishing pressure along the shoreline. The majority of the runoff that empties into the pond on site 3 enters from a large wetland situated in a cove at the base of a ridge just north of site 3. This wetland is an important feature of the habitat surrounding site 3 and should be left undisturbed if this site is developed.

The development of a new fly ash dredge pond will not impact significant wetlands or wetland habitat on any of the selected sites and there is no practicable alternative to impacting these deminimus wetlands. The areas surrounding these sites support habitat similar to that which would be disturbed for the fly ash dredge pond. In addition, open water habitat which would be principally disturbed on sites 1 and 3 appears to have

recently undergone considerable expansion just west of site 2. Thus, from the wetlands viewpoint, site 2 is the preferred site for development of a fly ash dredge pond. The development of this site would result in the fewest impacts to wetlands and, thus, be consistent with TVA policy on implementation of Executive Order 11990, Protection of Wetlands.

Site 3 is the least desirable site due to the presence of the highest quality wetlands and wetland habitats of the three selected sites.

WILDLIFE

Terrestrial habitat on the three sites is almost entirely open grasslands with some portions supporting shrubby tree growth. The major herbaceous species are fescues (Festuca sp.) and Sericea lespedeza (Lespedeza curreata). The existing ecotone is presently providing habitat for small furbearers, rodents, reptiles, and bird life, such as eastern meadowlark and horned lark, which prefer open grasslands and are abundant on all the areas. The existing terrestrial habitat is also attractive feeding ground for several raptor species, such as American kestrel, red-tailed hawk, and northern harrier. These areas are also expected to attract other predators, such as foxes and coyotes, which will utilize the abundant rodent populations. There is evidence of white-tailed deer use of the site, and the grasslands have attracted a good population of resident Canada geese which are nesting around several of the ponds.

The ponds and surrounding wetland habitat support a variety of organisms from the bottom of the food chain up. The ponds, particularly on site 3, are inhabited by substantial numbers of aquatic insects, fish, amphibians, and reptiles. This, in turn, has attracted a variety of

resident and migratory avian wetland wildlife species. The emergent vegetation along the shoreline has further encouraged wildlife by providing cover, food, and nesting habitat for many passerines, vading birds, shore birds, and marsh birds.

There are no known threatened or endangered or other sensitive species which would be affected by the proposal. The development of a new fly ash dreape pond will not impact significant wildlife habitat on any of the selected sites. The areas surrounding these sites support habitat similar to that which would be disturbed for the fly ash dredge pond. Site 2 is the most disturbed of the three selected areas. The site is bordered on three sides by heavily used roads; large conveyor machines are presently on the area; and parts of the site do not appear to have been completely reclaimed. Therefore, from a wildlife standpoint site 2 is the preferred site for development of a fly ash dredge pond. The development of this site would result in the fewest impacts to wildlife habitats. Site 3 is the least desirable site due to the presence of the highest quality wildlife habitats of the three selected sites.

CULTURAL RESOURCES

The processed fly ash pond would not affect cultural resources at any of the three sites. All three sites proposed for the fly ash pond have been previously altered by mining to the extent that investigations for cultural resources are not warranted. A historical site, Old Airdrie

Furnace, is located downstream of Paradise at Green River mile 99L.

Site 3 is bordered on the northwest by a proposed road which would provide access to the furnace. No adverse effects on this historic site would result from development of the dredge pond at this location provided access to the furnace is maintained.

AIR QUALITY

Construction of the proposed dredge pond will result in temporary fugitive dust emissions from clearing and grading during site preparation. Gasoline and diesel fueled equipment and vehicles used in construction will emit minor amounts of combustion pollutants, such as particulates, carbon monoxide, and nitrogen oxides. If debris cleared from the site is disposed of by open burning, additional small amounts of particulates and carbon monoxide will be released. Any open burning will be conducted in accordance with applicable State and local regulations.

Air quality impacts during operation will depend on the method of disposal. Material will be hydraulically dredged and conveyed to the new pond by pipe. Any air emissions from transport will be negligible. If either site 1 or 3 is chosen, all material will be handled and ponded wet. Fugitive dust from such operations will be minimal. If site 2 is chosen, stacking will be necessary. Material in the disposal pile will initially be wet. As necessary, the pile will be wetted to reduce dust emissions. Surfaces will be revegetated as soon as practical, and the active area of the pile will be kept as small as possible to further reduce dust.

With proper mitigation, this project should not significantly impact air quality.

FLOODPLAIN

All three of the candidate sites are located outside the limits of the identified 1-percent chance (100-year) and 0.2-percent chance (500-year) floodplains and would therefore be consistent with the requirements of Executive Order 11988 and TVA's floodplain management policy. Normal site drainage practice would be followed in providing drainage from the local site area.

CONCLUSION

Although use of site 2 would result in the least environmental impacts, none of the sites considered support unique or irreplaceable environmental resources or habitats. Site 3 contains the best wildlife habitat, highest quality wetlands habitats, and the best fishery resource. No significant environmental impacts will result from the development of any of these areas provided proper considerations are incorporated into design of the facility to protect groundwater resources from further degradation and commonly accepted best management techniques

are used during construction, operation, and reclamation to prevent erosion and air quality impacts.

COMMITMENTS

- 1. Water quality data will be collected from the discharge of the internal ash pond dredge cell to determine whether dredged ash will revert to more acidic conditions when isolated from the main body of the ash pond and its neutralizing effects. Changes in indicator metal concentrations and pH will be monitored over the 4- to 6-week dredge operation with at least two sample collections. If statistically significant changes in metals concentrations or pH drops of 1.5 units or greater occur, the analysis of leachate impacts on groundwater resources will be reevaluated.
- 2. A 7-day static renewal toxicity test using Ceriodaphnia and larval fathead minnows will be conducted during the interim internal dredging operation to evaluate changes from baseline toxicity. If significant increases in toxicity are detected, recommendations will be developed for future work. If water quality data collected under commitment 1 indicates drops in pH of more than 1.5 units, the 7-day static renewal toxicity tests will be repeated.

- 3. Follow-up toxicity studies will be conducted upon completion of the dredging operation to evaluate the differences in toxicity resulting from the increased ash pond volume. If significant toxicity is identified, appropriate corrective action will be implemented.
- 4. The ponded area in site 1 will be filled so that the pond bottom is two feet above the existing groundwater level. Fill will consist of material approved by the State of Kentucky geologist. The discharge ditch will meet applicable State requirements.
- 5. The dredge pond will be drained, sloped, covered, and reseeded to decrease surface infiltration that could produce surface seeps and/or the leachate flux to groundwater. This work will be performed within a reasonable time after completion of dredging activities.

2037k

William H. Thompson, Vice President of Power Production, LP 3S 58K-C

M. Paul Schmierbach, Manager of Environmental Quality, SPB 2S 201P-K Jan 0 1989 i

PARADISE FOSSIL PLANT - JACOBS CREEK ASH POND - DREDGE POND ENVIRONMENTAL

- References: 1. Memorandum, W. G. Ruffner to M. Paul Schmierbach, December 13,
 - 2. Memorandum, W. G. Ruffner to M. Paul Schmierbach, December 7,

This memorandum is in response to your December 13 request for formal approval of the dredge pond EA.

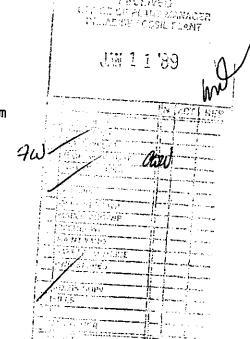
The Environmental Quality Staff (EQS) has reviewed the draft EA submitted on December 2 and subsequent revisions submitted by you on December 7 and December 13. The commitment list now appears to be complete and we will proceed to prepare a "Finding of No Significant Impact."

Please prepare and submit to EQS, a final version of the EA incorporating the comments noted on the attached draft. The American National Standards Institute number assigned to this document is TVA/RDG/EQS-89/1.

If you have any questions, please contact Richard M. Shane at extension 6654 or Dale V. Wilhelm at extension 6693 in Knoxville.

> Original signed by M. Paul Schmierbach

RMS: DVW: DKT Attachment cc (Attachment):


Files, EQS, SPB 2S 242P-K

E. S. Christenbury, ET 11B 33H-K

W. W. Dorroh, Paradise Fossil Plant

J. T. Shields, 514 CEB-K

Prepared by Richard M. Shane and Dale V. Wilhelm

FELLINED

DRAFT ENVIRONMENTAL ASSESSMENT

DEVELOPMENT OF DREDGED ASH DISPOSAL AREA PARADISE FOSSIL PLANT

Introduction

Paradise Steam—Electric Plant (PAF) is a 3-unit, 2,558-MWe coal-fired facility in Muhlenberg County, Kentucky. The plant is located on the west bank of the Green River at Green River Mile 100.5. Construction for units 1 and 2 began in November 1959, and commercial operation begin in May and November 1963. Each of these units has a nameplate rating of 704 MWe each. In February 1970, unit 3 was accepted for commercial operation. Fly ash from this plant is sluiced to a settling pond, with supernatant discharged at an average flow of 53.19 cfs to Jacobs Creek, a small tributary of the Green River.

This project is to construct a dredge pond near the Jacobs Creek ash pond capable of storing at least 1x10⁶ cubic yards of fly ash dredged from the ash pond. This will provide approximately 10 years of additional fly ash storage in the fly ash pond. Effluent from the dredge pond will be returned to the Jacobs Creek ash pond for discharge to Jacobs Creek.

(NPDES No. KYDODYZO1 DISCHARGE NS. 001

Approximately 245 acres of land will be purchased under this project for the dredge pond although the pond itself will constitute only about 50 acres. Construction is expected to begin in June 1989, and dredging in February 1990. Based on the latest pond volume survey and forecasted operation, Paradise would be without fly ash storage space in November 1990 without this project.

This assessment is to evaluate the environmental consequences associated with the purchase and development of a new offsite area for dredged ash disposal at PAF.

<u>Alternatives Considered</u>

The selection of an environmentally acceptable disposal alternative was based on the following criteria:

- 1. A storage volume equivalent to a minimum 1×10^6 cubic yards.
- 2. The proximity of the site to the active ash pond.
- 3. The cost of site development and operation.

4. An area that has favorable physical properties for ensuring no significant impacts to the environmental resources, including groundwater, surface water, biota, and cultural resources.

6

In the selection of a site for development of additional ash disposal, the following alternatives have been considered.

Alternative 1—Construct two dredge cells in the old scrubber landfill area.

Under this option two small dredge cells would be constructed in the old scrubber landfill area. Each cell would be filled three times by dredging. Each area would be reclaimed twice between dredgings by dewatering the ash and stacking the reclaimed ash on high ground in the old scrubber landfill. The total costs associated with this option are \$3,932,131. This is the highest cost option because of the high costs associated with reclaiming ash and moving it to ther areas between dredging operations.

Alternative 2—Construct two dredge areas, one in the old scrubber landfill area, the other on an additional 245—acre tract.

Under this option dikes would be constructed in the old scrubber landfill area sufficient to contain 531,000 cubic yards of dredged material. In addition, a 245-acre tract of land would be purchased. This area would

be developed to contain the balance of 669,000 cubic yards of dredged material on 50 acres of the site. The total costs associated with this option are \$2,692,000. The costs associated with this option are less than for alternative 1 because the ash would not have to be moved from the dredging areas to other areas for permanent disposal. However, this option is higher in cost than alternative 3 because of the need to construct more diked areas.

Alternative 3—Develop one dredged ash disposal area.

Under this option, three potential sites were considered (see figure 1). The preferred site is on a 245-acre tract of land which would be purchased. Dikes capable of storing the entire 1 million cubic yards of material to be dredged would be constructed to contain a 50-acre dredge pond. This is the least investment alternative and is the proposed project. The total costs associated with this option are \$2,389,000. This option is less costly because there is no need to reclaim and haul ash to other areas for permanent disposal and it is more economical from a construction standpoint to develop one larger area than two small areas.

Alternative 4-No action

B

The no action alternative is infeasible because free water volume must be restored in the ash pond if the plant is to continue uninterrupted operation. Paradise Steam Plant is one of TVA's largest and most reliable plants and is essential to base load operation.

CONSTRUCT DREDGE POND AND DREDGE ASH POND

Potential Sites Considered

Site 1—Although the total acreage of this site is a little larger than each of the other two sites considered, site 1 would require development of the smallest area for the dredge pond. This site consists of land that was previously strip mined and has been reclaimed leaving a small pond of approximately 3.4 acres surrounded by open grassland. Part of this area is a depression bounded by hills or ridges about 50 feet in elevation along two sides and would require much less diking for construction of the 50-acre area to contain the desired dredge volume. Although this land is not currently a part of the TVA reservation, one of the two owners has indicated a willingness to sell approximately 169 acres of the 245-acre tract required by TVA.

Site 2—This area is a 140 pacre site west of the Jacobs Creek ash pond which was used for a short time for stacking of scrubber sludge wastes. It consists of previously mined lands which were reclaimed and is now open grassland. Two small hollows were left in the area which contain small ponds. This area was discussed in a previous EA for development of coal—wash refuse and scrubber sludge disposal areas. The area is on a fairly flat elevation about 100 feet above the ash pond elevation and would therefore require much more diking than the other two areas considered in order to contain the ash volume to be dredged in this project.

Site 3—This 100 acre area is at the northern boundary of the current reservation adjacent to the Green River. It consists primarily of mined land which has been reclaimed. Strip mine pits in the area were left as part of the reclamation process. This area was considered in a previous EA for use as a permanent coal-wash fines refuse and dredge material disposal area. At that time the lake had already been partially filled with dredge materials from construction of a nearby coal barge docking facility. The area is currently used for disposal of miscellaneous dredged materials when required. Although development of this area would not require a great deal of diking to contain the desired volume of dredged ash, use of this area is complicated by other factors. Its remote distance from the active ash pond and its location on the other side of the plant would make it very difficult and costly to construct dredge lines to this site. It would also be difficult or impossible to reroute dredge pond return flow back to the existing ash pond. It is uncertain whether the water from this pond could meet NPDES permit limits enabling it to be discharged directly to the river without further treatment.

Preferred Alternative

Based on consideration of the engineering and economic factors discussed above, the preferred alternative is to construct the 50-acre dredge settling pond [cm] site 1. This site will be purchased by TVA and developed for the disposal of 1x10 cubic yards of dredged ash. Dikes

will be constructed from the best locally available material based on soil tests, probably obtained from a borrow area in the nearby scrubber stacking area. The top of the dikes will be at 460 feet of elevation (see figure 2). This area now drains toward upper Jacobs Creek. Return flow from dredging will be routed back to the ash pond and will flow by gravity through the existing natural drainage for the area adjacent to the preferred site. Diking will prevent flows into the upper Jacobs Creek area.

Upon completion of construction, piping will be assembled from the ash pond dredge to the dredge area. The estimated time to complete the dredging of 1x10⁶ cubic yards of ash from the active ash pond is approximately ten months. After completion of dredging the ash would be allowed to dewater and the area would be contoured to promote natural rainwater runoff. The ash will then be covered and seeded in accordance with State closure requirements. Appropriate erosion control features will be included in the design to allow for an environmentally acceptable final closure.

Completion of this project will restore approximately 10 years of storage volume to the active ash pond.

Consideration of the environmental factors associated with the use of the three areas considered is discussed in the following sections.

5=

Reference No. 2

Draft Report Peabody Ash Pond Expansion 1998

I. INTRODUCTION

The Paradise Fossil Plant is located on the west bank of the Green River at mile 100 in Muhlenberg County, Kentucky. The plant is located in western Kentucky, 5 miles east of Drakesboro. Paradise Fossil Plant has three units. Units 1 and 2 went into commercial operation in 1963. They had a rated capacity of 1300MW and were uprated to 1408MW in 1965. Unit 3 became operational in 1970 with an added rated capacity of 1150MW to give an overall plant capacity of 2558MW. With cyclone firing of the boilers, the units produce approximately 80% bottom ash which is tapped from the bottom of the furnace and 20% fly ash. Electrostatic precipitators remove the fly ash from the flue gas. The fly ash is collected in hoppers under the precipitators and conveyed pneumatically by a dry vacuum system to an elevated separator tank. Water jet exhausters located at the tanks mix the fly ash with water. The ash and water slurry from all three units is then pumped to the ash disposal areas.

II. HISTORICAL DEVELOPMENT

Four fly ash disposal areas were initially designated to receive fly ash from Units 1 and 2. By 1967, Area No.1 and Area No. 3 were filled and graded to proper elevations. Area No. 1 is currently part of the coal storage yard and Area No. 3 is the site of Coal Yard Drainage Basin No. 3 and plant parking. During this time, Area No. 2 was being sluiced into. The original dikes for this area were at EL 406 and designed with extra width at the top for future dike raisings. By late 1967, Area No. 2 was divided into two areas, Area 2A and Area 2B, by a 1200-ft dike to facilitate better settling time. At this time, several dikes were relocated outward and raised a few feet in several sections. In

1968, Area No. 4 was being sluiced into. Area 4 was filled in 1970 and is currently part of the coal storage yard.

In 1970, Area No. 2 dikes were raised to EL 416 to provide for additional ash storage. It was anticipated that after Unit 3 began operation in 1970, Area 2A and 2B would provide storage for only an additional 2 ½ months. Consequently, an ash reclaiming hopper for loading ash, located at the south end of ponds 2A and 2B, and an overland ash conveying system were constructed and used to transfer ash from Area 2 to nearby abandoned strip mine pits south of the plant for disposal.

During the design phase of the plant Units 1 and 2, preliminary studies had been made of the Jacobs Creek Area, located approximately ½ mile south of the plant, to utilize this area for future ash disposal. In 1970/71, the Jacobs Creek Fly Ash Disposal Area pond was constructed, with the original dikes, left from strip mining operation, raised to approximately EL 411. The Jacobs Creek Fly Ash Disposal Area received only sluiced fly ash.

After 1971, only bottom ash was received at Areas 2A and 2B and the overland conveyor system continued in use for bottom ash storage at the mine pits until the early 1980s. In the early 1980s, TVA marketed its bottom ash to Reed Minerals for use in shingles and as a sand blasting material. Since this time, Reed Minerals has reclaimed all the bottom ash from Area 2A and 2B for their use.

In 1981, the plant began raising Jacobs Creek Ash Disposal Area dikes to EL 420 to add more storage to the area. Then, in 1988, an internal dredge pond, Dredge Cell A, was constructed inside the pond to provide additional storage. Fly ash from the Jacobs Creek Fly Ash Disposal Area was dredged to this area and was discontinued by 1991.

During this time, another internal dredge cell, Dredge Cell B, had been constructed and also dredged into. In 1993, the east dredge cell, located approximately ½ mile west of Jacobs Creek Fly Ash Disposal Area, was constructed to accept dredged fly ash from Jacobs Creek Fly Ash Disposal Area. The plant stopped dredging into this area by 1994.

III. SITE DESCRIPTION

The area for the Jacobs Creek Fly Ash Pond Area Extension is adjacent to and south of the existing Jacobs Creek Ash Disposal Area. Changes to the existing conditions of this area were required to make the area adequate for use as a sluiced ash disposal area. The existing dikes left from previous strip mining operations along the southern and eastern portions of the area were too low to allow the pond to be operated above the year flood elevation. In order to meet environmental standards, it is necessary for t pond to be totally contained above the 100-year flood elevation and allow enough retention time for suspended solids to settle out before discharging to open waters. Therefore, dikes were raised from approximate elevation 400 to elevation 408 and tie into the existing Jacobs Creek Ash Disposal Area south dike. The breach through the existing dikes near the southeast corner (Peabody KPDES permitted discharge) was closed and the Paradise Fossil Plant KPDES discharge was relocated to near the existing Jacobs Creek Fly Ash Disposal Area in accordance with state and Corps of Engineer requests during the permitting process. Dike roads have a crushed stone surfacing and dike slopes have established vegetative cover. A channel was constructed at the west end of the existing south dike to allow inflow into the new pond from the existing Jacobs Creek Ash Disposal Area pond. A divider dike was constructed in the northeast portion of the area

to form a stilling pool. A channel through the divider dike and floating boom were installed on the south end of the divider dike. This allows for proper settlement of suspended solids before discharging through three spillway and skimmer structures and through three 36" diameter concrete pipes to Jacobs Creek. Stairs were constructed from the top of dike to the outlets for ease in taking samples for environmental monitoring.

IV. ASH DISPOSAL OPTIONS

There were several options considered before the Fly Ash Pond Area Expansion was considered to be the least cost solution to the depleting ash storage problem.

Option A

Dredging 350,000 cubic yards of material to the existing east/west dredge cells was considered. This option extended the life of ash disposal only 3 ½ years to June 2002. The cost of the project was estimated to be \$1,840,000.

Option B

The construction of a dry collection system and dry stacking operation was considered.

The capital costs for this option were extremely high at an estimated cost of \$41,000,000.

It was also determined that the cyclone furnace does not produce the quantity of fly ash necessary to support a dry collection system.

Option C

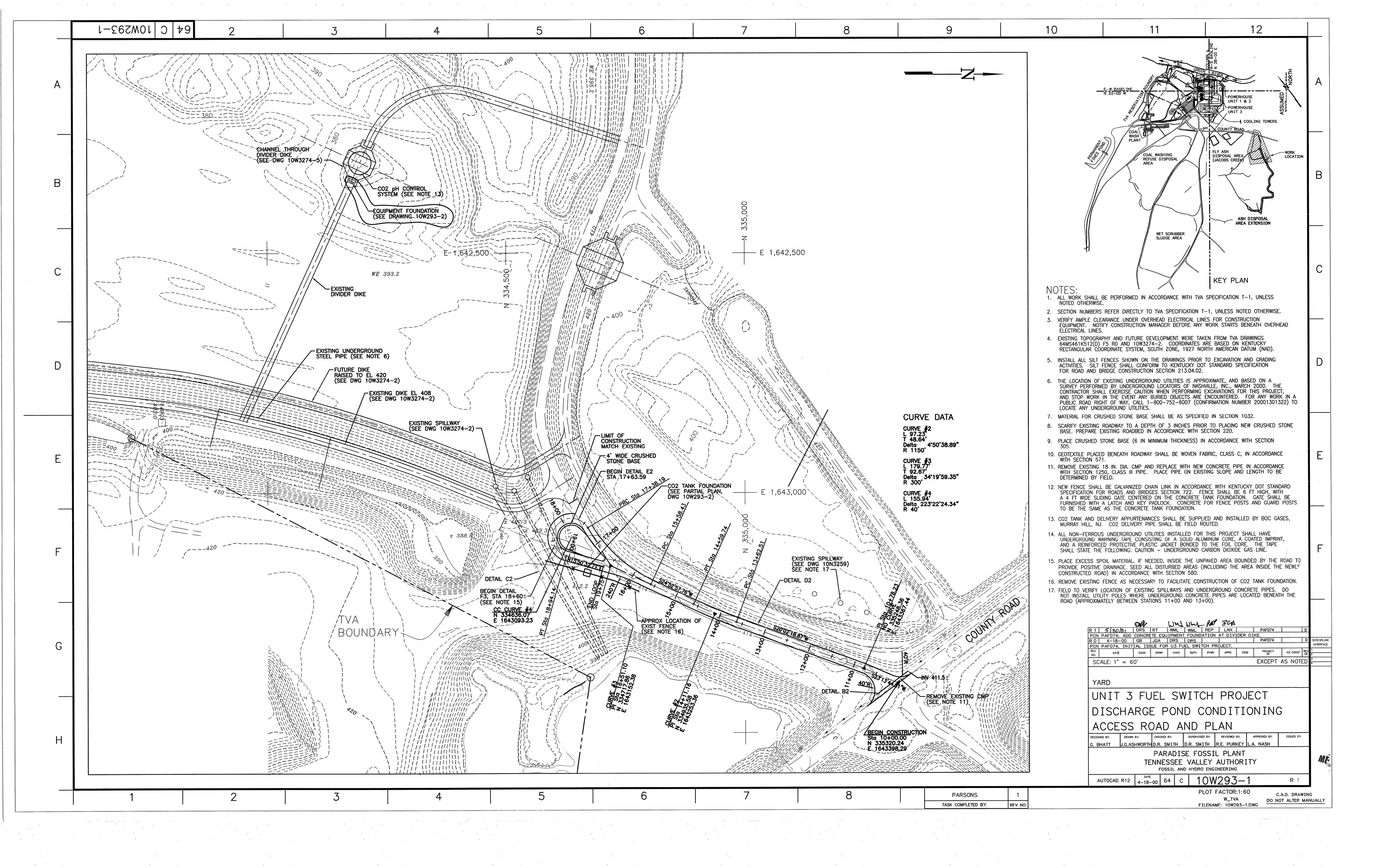
Raising the internal dredge cells in Jacobs Creek Fly Ash Disposal Area and dry stacking fly ash in this area was considered. This option would cost an estimated \$8,500,000. A solid waste permit would also be required in this case.

Option D

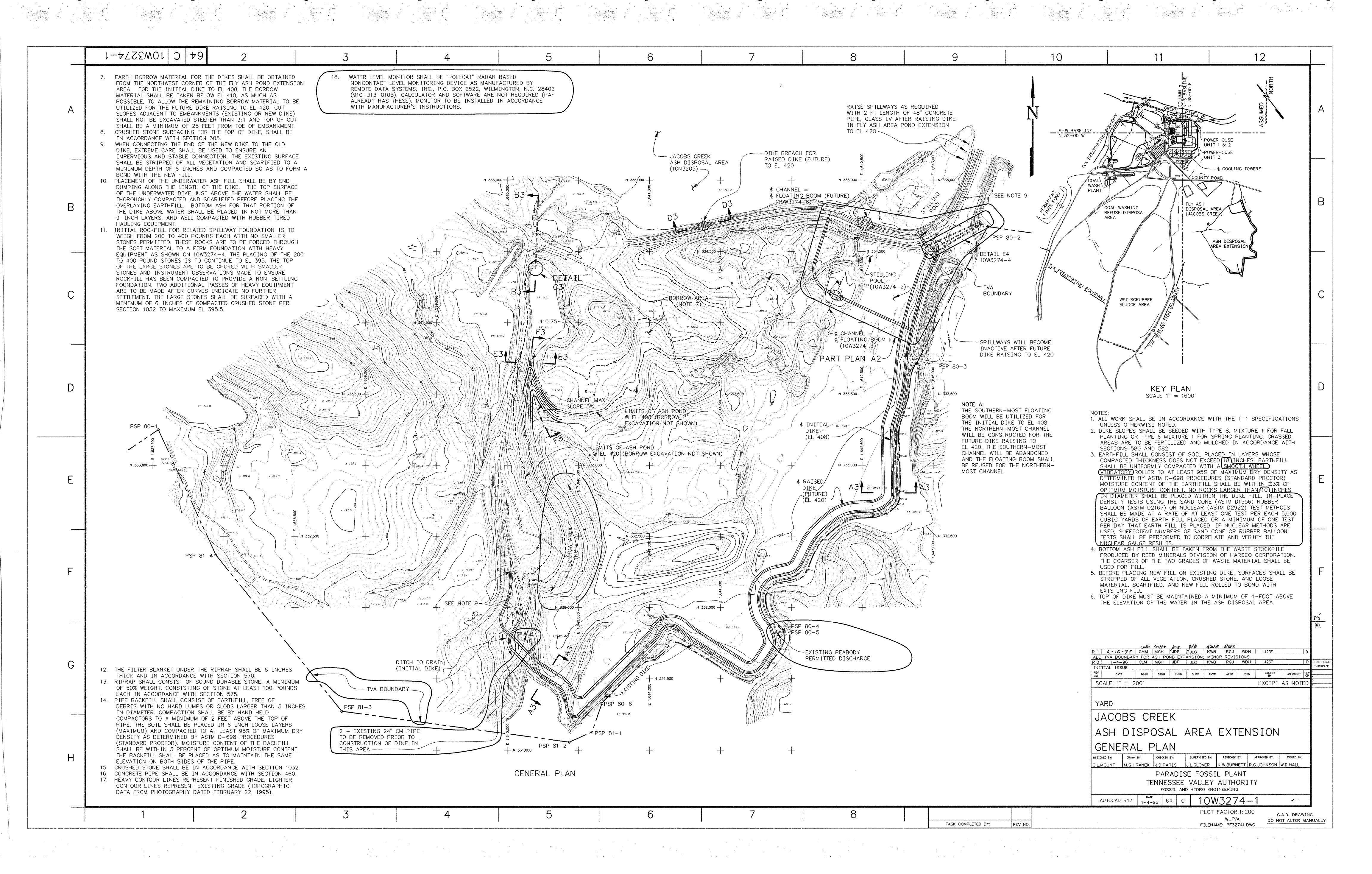
The construction of a new ash pond south of the scrubber pond was considered. Fly ash material would be dredged here, then reclaimed and dry stacked. This option was considered not to be feasible due to the location of environmental wetlands on the site.

Option E

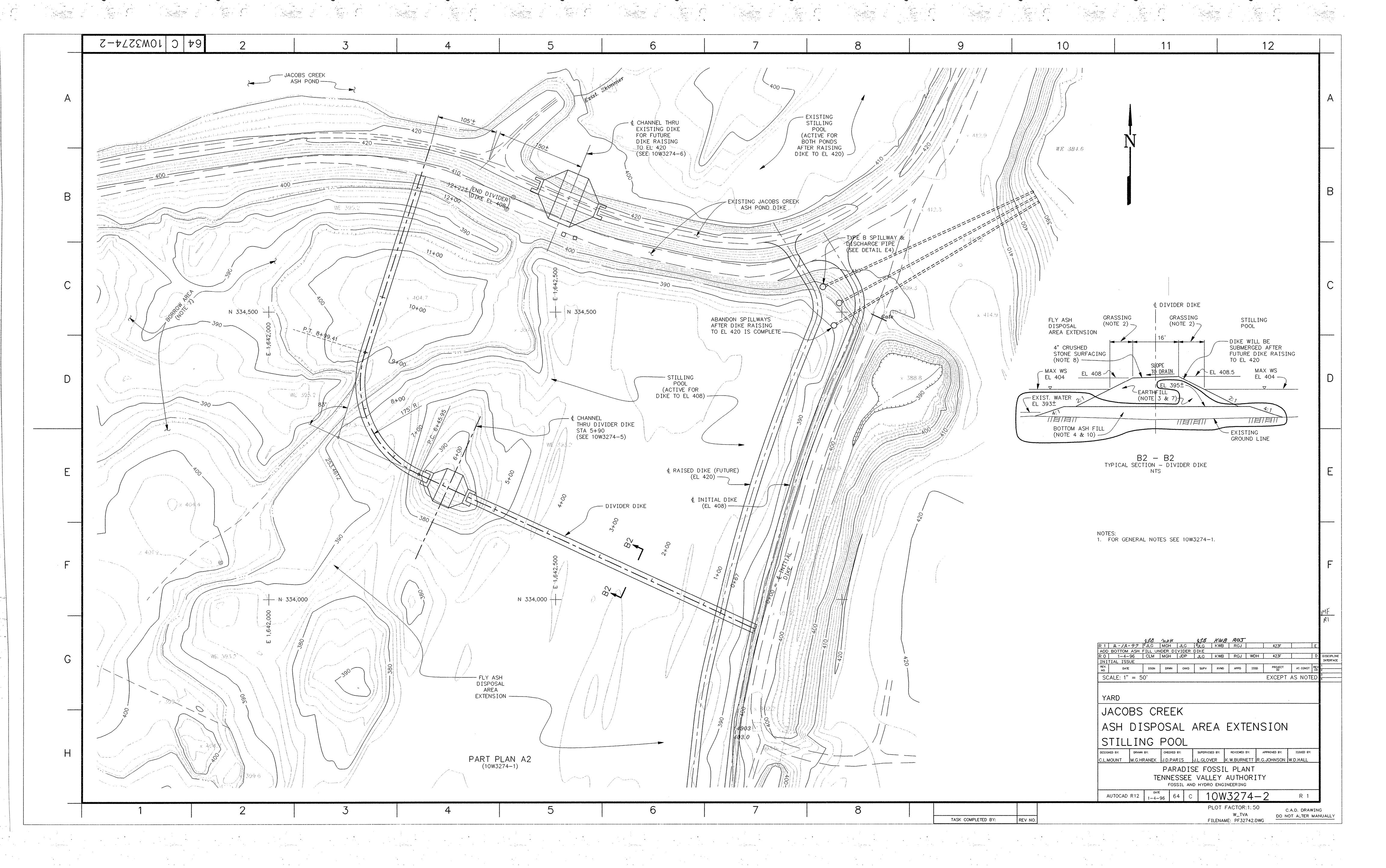
Constructing the Jacobs Creek Fly Ash Pond Expansion Area was chosen as the least cost option at an estimated \$1,100,000.

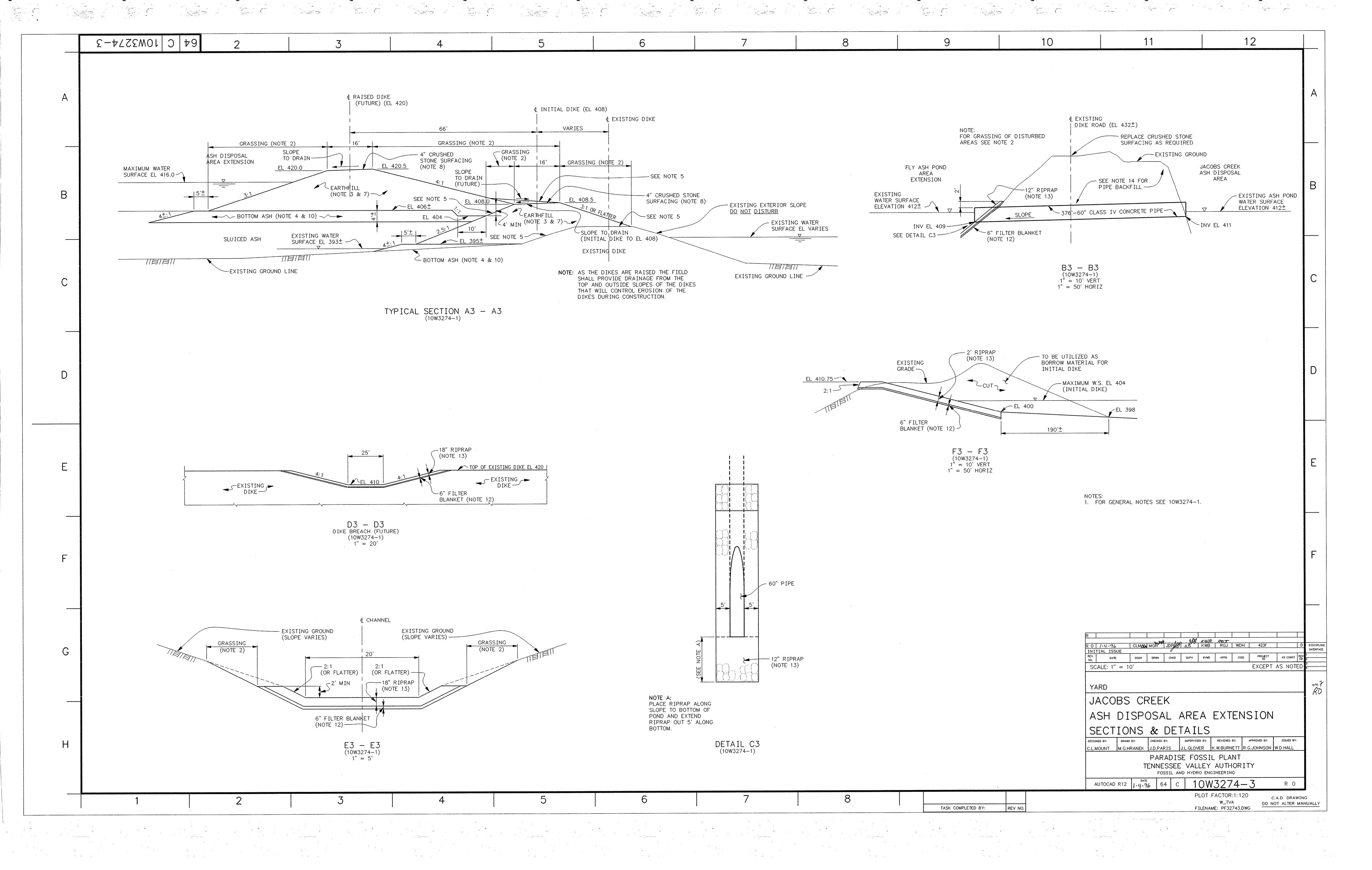

V. COSTS OF PROJECT

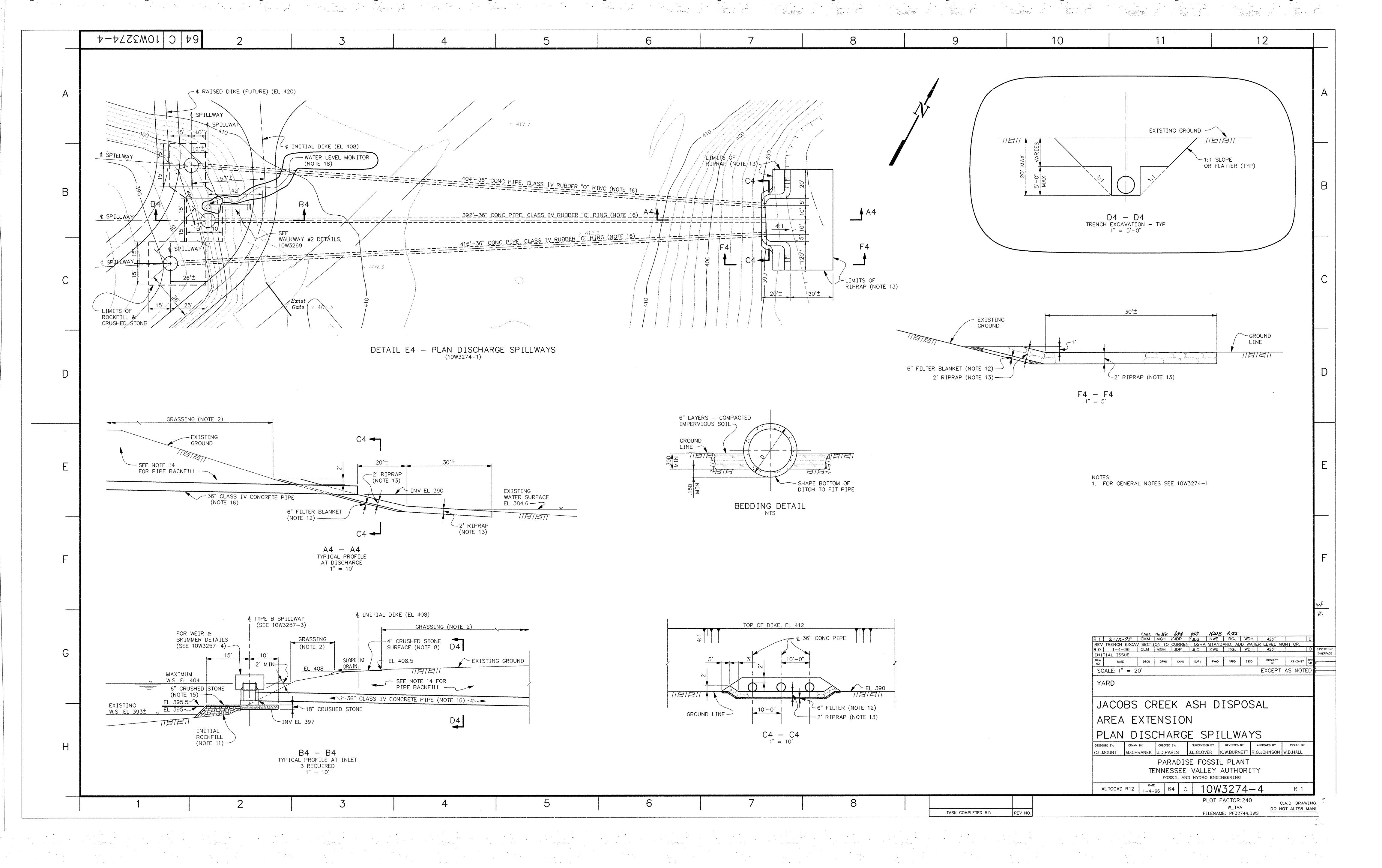
VI. PROJECTED USE OF SITE


Based on current generation projection for the next 15 years average high load coal burn forecast, it has been determined that the projected amount of fly ash produced which is sluiced into the active ash disposal area is 108,173 cubic yards per year. Based on this projection, the Fly Ash Pond Area Expansion will have a storage capacity of approximately 18 years, with the existing dikes at elevation 408. A second lift to raise the dikes to elevation 420 can provide additional ash storage capacity of approximately 21 years. At this time, the north dike of the Fly Ash Pond Area Expansion will be breached and a floating boom installed so that the Jacobs Creek Ash Disposal Area stilling pool and discharge structures will be utilized.

Reference No. 3


Peabody Ash Pond And Stilling Pond Drawings

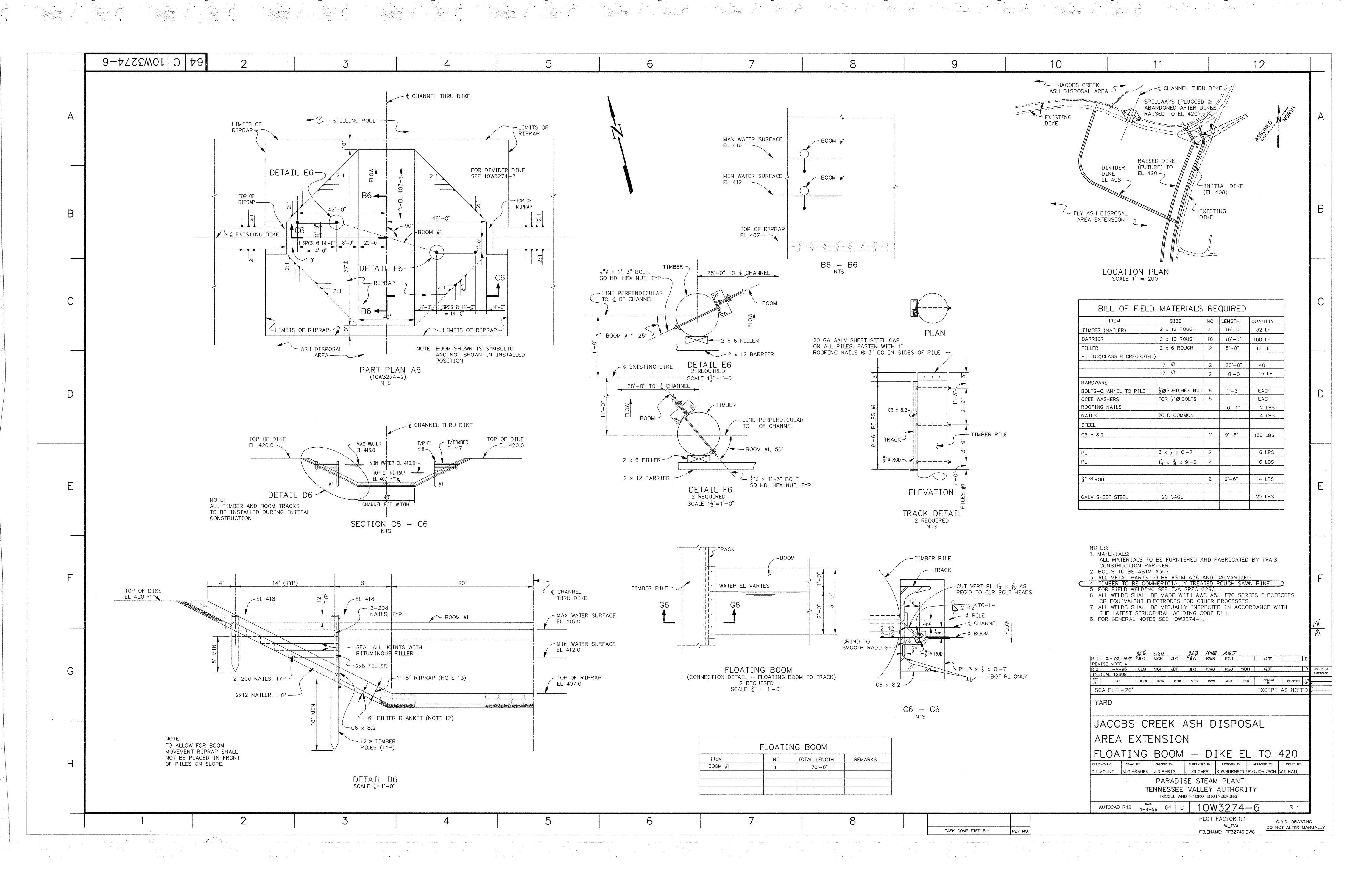

PAF-10W293-1-SHT -REV 1 YARD UNIT 3 FUEL SWITCH PROJECT DISCHARGE POND CONDITIONING ACCESS ROAD AND PLAN (100% of Scale); Paradise - Peabody Ash and Stilling Ponds; 1-27-2009 15-21-19; 1/27/2009 04:46 PM



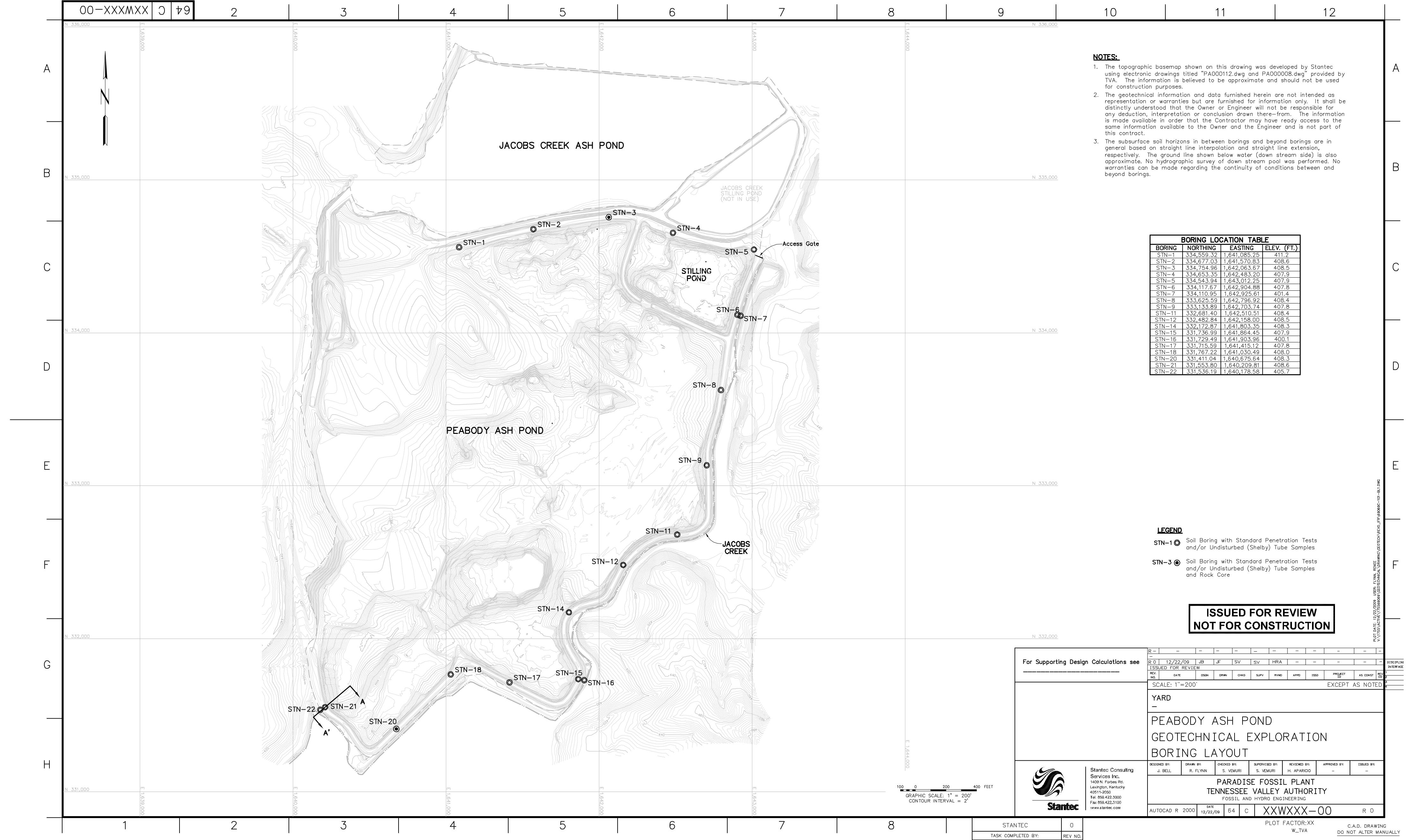
PAF-10W3274-1-SHT -REV 1 YARD JACOBS CREEK ASH DISPOSAL AREA EXTENSION GENERAL PLAN (100% of Scale); Paradise - Peabody Ash and Stilling Ponds; 1-27-2009 15-21-19; 1/27/2009 04:46 PM



PAF-10W3274-2-SHT -REV 1 YARD JACOBS CREEK ASH DISPOSAL AREA EXTENSION STILLING POOL (100% of Scale); Paradise - Peabody Ash and Stilling Ponds; 1-27-2009 15-21-19; 1/27/2009 04:46 PM



NUT DEVIA VADD JACODO ODEEK ACU DIODOCAL ADEA EVTENCION DI AN DIOCUADOE ODII I WAYO (4000) et o cele). Deve de a chi acut division Devide a consideration de division de consideration de conside


PAF-10W3274-5-SHT -REV 1 YARD JACOBS CREEK ASH DISPOSAL AREA EXTENSION FLOATING BOOM - DIKE EL TO 408 (100% of Scale); Paradise - Peabody Ash and Stilling Ponds; 1-27-2009 15-21-19; 1/27/2009 04:46 PM

PAF-10W3274-6-SHT -REV 1 YARD JACOBS CREEK ASH DISPOSAL AREA EXTENSION FLOATING BOOM - DIKE EL TO 420 (100% of Scale); Paradise - Peabody Ash and Stilling Ponds; 1-27-2009 15-21-19; 1/27/2009 04:46 PM

Appendix B

Boring Layout and Typed Logs of Boring

Project I	Number	175569069			Location	F	Paradise F	ossil Plant	
Project I	Name	TVA - PAF Peaboo	dy Ash Pond		Boring No.		STN-1	Total Depth	46.5 ft
County	•	Muhlenberg			Surface Elev	vation	41	1.2 ft	
Project ⁻	Туре	Geotechnical Explo	oration		Date Started	 3 b	3/24/09	Completed	8/24/09
Supervis	sor	R. Riker Dr	iller J. Felts	<u></u>	Depth to Wa	ater1	14.4 ft	Date/Time	8/24/09
Logged	Ву	B. Bline			Depth to Wa	ater 1	N/A	Date/Time	N/A
Litholo	gy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
411.2	0.0	Top of Hole							_
-		Soil 1: MINESPO clay with intermed lenses, brown to g	liate sand gray with	SPT-1	0.0 - 1.5	0.7	7-7-7	11	-
-		some reddish mot moist to wet, soft to stiff and with heterogeneous mi	to very	SPT-2	1.5 - 3.0	1.3	4-5-7		-
-		coal, shale, and cl fragments		ST-1	3.0 - 5.0	1.6			-
-				SPT-3	6.0 - 7.5	1.0	5-2-3	22	-
				0 0	0.0 7.0	1.0	020		1
402.5	8.7	Online MINITORO	11 . 1	SPT-4	7.5 - 9.0	0.3	2-1-2]
 - -		Soil 2: MINESPO clay with sand, oli grayish brown with intermittent orange mottling, moist to	ve gray to h e wet, stiff	ST-2	9.0 - 11.0	1.5			-
-		to very stiff and wi heterogeneous mi coal, shale, and cl fragments	ixture of	SPT-5	12.0 - 13.5	1.1	0-0-0	30	-
-				SPT-6	13.5 - 15.0	0.2	1-1-2		Some coal fragments
_				SPT-7	15.0 - 16.5	0.1	1-2-2	23	-
				SPT-8	17.5 - 19.0	1.3	2-2-3		-
				SPT-9	20.0 - 21.5	0.8	0-0-2	29	-
				SPT-10	22.5 - 24.0	1.2	0-0-2		-
					ting Sondoos	-			12/17/09

Project I	Number	175569069			Location	Pa	aradise F	ossil Plant	
Project I	Name	TVA - PAF Peaboo	ly Ash Pond	<u> </u>	Boring No.	S	TN-1	Total Dept	h 46.5 ft
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
-		Soil 2: MINESPOL clay with sand, olingrayish brown with intermittent orange mottling, moist to to very stiff and with heterogeneous mit coal, shale, and clar fragments (Conti	ve gray to e wet, stiff th xture of		25.6 - 26.5 27.5 - 29.0	0.8	0-0-2	19	Higher _ percentage of coal fragments _ with depth
-		nagmente (com	naca)	SPT-13	30.0 - 31.5	0.9	1-1-2	25	<u> </u>
-				SPT-14	32.5 - 34.0	1.1	0-6-4		- -
-				SPT-15	35.0 - 36.5	1.5	2-3-5	20	_ - -
-				SPT-16	37.5 - 39.0	1.4	2-3-4		-
-				SPT-17	40.0 - 41.5	1.4	2-2-3	22	- - -
-				SPT-18	42.5 - 44.0	1.5	3-3-4		-
	46.5	No Defined /		SPT-19	45.0 - 46.5	1.5	0-0-3	21	-
STANTECFHISM_LEGACY 175868008 GPJ FMSM.GRAPHIC LOG GDJ 1217108		No Refusal / Bottom of Hole							

Project Nar County	me	T./A DATE:			Location	F			
County		TVA - PAF Peabod	y Ash Pond		Boring No.	5	STN-2	Total Depth	41.5 ft
Journey		Muhlenberg			Surface Elev	vation	408	3.6 ft	
Project Typ	pe _	Geotechnical Explo	ration		Date Started	8 t	/13/09	Completed	8/13/09
Supervisor	r _	R. Riker Dri	ller M. Wet	hington	Depth to Wa	ater 2	7.5 ft	Date/Time	8/13/09
Logged By	<i>'</i>	R. Riker			Depth to Wa	ater N	I/A	Date/Time	N/A
Lithology	,		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
408.6	0.0	Top of Hole							
		Soil 1: MINESPOI clay with intermedi lenses, brown to g some reddish moti	ate sand ray with	SPT-1	0.0 - 1.5	0.6	3-4-8		-
-		moist to wet, soft t stiff and with heterogeneous mix	o very xture of	SPT-2	1.5 - 3.0	0.2	6-7-8	15	
_		coal, shale, and ch fragments	nert	SPT-3	3.0 - 4.5	0.1	7-6-6		-
402.6	6.0			SPT-4	4.5 - 6.0	0.9	4-3-4	18	_
-		Soil 2: MINESPOIL: Lean clay with sand, olive gray to grayish brown with intermittent orange		SPT-5	6.0 - 7.5	1.4	8-3-4		-
-		mottling, moist to v to very stiff and with heterogeneous mit	vet, stiff th xture of	SPT-6	7.5 - 9.0	0.7	1-1-1	34	-
-		coal, shale, and ch fragments	nert	SPT-7	9.0 - 10.5	1.5	5-2-3		-
-				SPT-8	10.5 - 12.0	1.5	6-2-2	37	-
-				SPT-9	12.0 - 13.5	1.5	1-1-4		-
_				SPT-10	13.5 - 15.0	1.4	1-1-1	34	_
				SPT-11	15.0 - 16.5	1.5	3-3-4		-
LANGE LEGISLA CARO SONO CONTRACTOR CONTRACTO				SPT-12	17.5 - 19.0	1.5	2-2-3	24	-
AN EURANALEGACY TY				SPT-13	20.0 - 21.5	1.5	1-3-5		-

Project I	Number	175569069			Location	P	aradise F	ossil Plant		7
Project N	Name	TVA - PAF Peaboo	ly Ash Pond	<u> </u>	Boring No.	S	TN-2	Total Dept	h41.5 ft	
Litholo	agy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %		┨
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks	١
-		Soil 2: MINESPO clay with sand, oli grayish brown with intermittent orange mottling, moist to very stiff and wi	IL: Lean ve gray to n e wet, stiff		22.5 - 24.0	1.5	6-7-6	27		
-		heterogeneous mi coal, shale, and cl fragments (Conti	ixture of hert	SPT-15	25.0 - 26.5	1.2	4-4-7		-	_
-				SPT-16	27.5 - 29.0	0.2	6-26-29	11	very gravelly from 28.5' to 30.0'	
-				SPT-17	30.0 - 31.5	1.0	2-3-5		-	_
-				SPT-18	32.5 - 34.0	1.1	3-4-6	24		
-				SPT-19	35.0 - 36.5	1.0	4-3-7		-	_
-				SPT-20	37.5 - 39.0	1.5	1-3-6	20		
- 5044 - 155 - 367.1	41.5			SPT-21	40.0 - 41.5	1.1	2-2-3		-	_
LEGACY 178569068 GPJ FMSM.GRAPHCLI		No Refusal / Bottom of Hole							-	-
STANIECH MSM.					ting Services				12/17/	7/09

Project I	Number	175569069			Location	F	aradise F	ossil Plant	
Project I	Name	TVA - PAF Peaboo	dy Ash Pond		Boring No.	S	STN-3	Total Depth	62.0 ft
County		Muhlenberg			Surface Elev	vation	408	3.5 ft	
Project ⁻	Туре	Geotechnical Explo	oration		Date Started	8 t	/12/09	Completed	8/12/09
Supervis	sor	R. Riker Dr	iller M. Wet	hington	Depth to Wa	ater D	ry	Date/Time	8/12/09
Logged	Ву	R. Riker			Depth to Wa	ater N	I/A	Date/Time	N/A
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
408.5	0.0	Top of Hole							_
_		Soil 1: MINESPO clay with intermed lenses, brown to gome reddish mot	liate sand gray with	SPT-1	0.0 - 1.5	1.0	3-6-10	13	-
-		moist to wet, soft to stiff and with heterogeneous mi	to very ixture of	SPT-2	1.5 - 3.0	0.9	6-6-7		- -
-		coal, shale, and cl fragments	hert	SPT-3	3.0 - 4.5	0.8	7-7-9	14	-
-				SPT-4	4.5 - 6.0	0.8	3-5-6		-
-				SPT-5	6.0 - 7.5	1.3	4-5-6	15	-
-				SPT-6	7.5 - 9.0	0.6	2-6-4		-
_				SPT-7	9.0 - 10.5	0.4	12-3-4		_
-				SPT-8	10.5 - 12.0	0.6	4-4-3	12	-
_				SPT-9	12.0 - 13.5	1.2	2-2-3	14	-
<u>-</u>				SPT-10	13.5 - 15.0	0.4	9-10-12		-
- 391.5	17.0			SPT-11	15.0 - 16.5	0.5	4-6-3	16	=
-	17.0	Soil 2: MINESPO clay with sand, olingrayish brown with intermittent orange mottling, moist to to very stiff and with	ve gray to h e wet, stiff ith	SPT-12	17.5 - 19.0	1.4	1-1-2		- - -
		heterogeneous mi coal, shale, and cl fragments		SPT-13	20.0 - 21.5	1.3	2-4-6	20	-

Project I	Number	175569069				Pa	aradise F	ossil Plant	
Project I	Name	TVA - PAF Peaboo	ly Ash Pond	<u> </u>	Boring No.	S	TN-3	Total Dept	h62.0 ft
Litholo	ogv		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
-		Soil 2: MINESPO clay with sand, olingrayish brown with intermittent orange mottling, moist to very stiff and wi	ve gray to n e wet, stiff	SPT-14	22.5 - 24.0	1.5	1-1-2		-
- -		heterogeneous mi coal, shale, and cl fragments (Conti	ixture of hert	SPT-15	25.0 - 26.5	1.3	2-3-3	20	Bulk sample — from 25' to 27.5' —
-				SPT-16	27.5 - 29.0	1.5	2-2-4		-
- -				SPT-17	30.0 - 31.5	1.2	2-4-3	24	Organic odor — with wood chips from 27.3' to — 35.0'
-				SPT-18	32.5 - 34.0	1.4	2-4-4		-
-				SPT-19	35.0 - 36.5	1.5	2-2-3	24	-
-				SPT-20	37.5 - 39.0	1.5	1-2-3		-
				SPT-21	40.0 - 41.5	1.5	2-8-7	26	-
Labora recent of the construction				SPT-22	42.5 - 44.0	1.5	1-1-3		-
S AN EUFWON_EOW.				SPT-23	45.0 - 46.5	1.1	5-5-6	23	12/17/05

Page: 3 of 3

Project I	Number	175569069		Location	P	aradise F	ossil Plant		
Project I	Name	TVA - PAF Peaboo	ly Ash Pond		Boring No.	S	TN-3	Total Depth	62.0 ft
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
- - -		Soil 2: MINESPOI clay with sand, oliving grayish brown with intermittent orange mottling, moist to vory stiff and with the terogeneous micoal, shale, and clargments (Contil	ve gray to e wet, stiff th xture of						- - - -
353.5	55.0								-
-		Shale, light gray, moderately hard, weathered		SPT-24	55.0 - 56.5	1.1	17-47-47		Began Core
-									Fracture from 59.8' to 59.9';
_									Fracture from 57.8' to 57.9'; Suet Zone from _56.8' to 57.0'
346.5	62.0				5.5	5.2	95	62.0	-
3.0.0	02.0	Bottom of Hole		1		. <u> </u>	, 55	, 02.0	_
-		Top of Rock = 55. Elevation (353.5)	0						-
<u></u>									_
_									-
_									-
_									-
-									-
- - - -									_
					ting Services				12/17/0

Project I	Number	175569069			Location	F	aradise F	ossil Plant		٦
Project I	Name	TVA - PAF Peaboo	dy Ash Pond		Boring No.		STN-4	Total Depth	46.5 ft	
County		Muhlenberg			Surface Elev	vation	407	7.9 ft		
Project ⁻	Туре	Geotechnical Expl	oration		Date Started	9 1	/2/09	Completed	9/2/09	
Supervis	sor	R. Riker Dr	iller J. Weth	nington	Depth to Wa	ater 2	7.0 ft	Date/Time	9/2/09	
Logged	Ву	M. Jones			Depth to Wa	ater N	I/A	Date/Time		١
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %		┪
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks	
407.9	0.0	Top of Hole								4
-		lenses, brown to g	ay with intermediate sand nses, brown to gray with ome reddish mottling, oist to wet, soft to very			1.3	6-5-10	12		
-		moist to wet, soft to stiff and with	to very	SPT-2	1.5 - 3.0	1.4	10-14-14			-
_		heterogeneous m coal, shale, and c fragments		SPT-3	3.0 - 4.5	1.5	4-8-9			$\frac{1}{2}$
-				SPT-4	4.5 - 6.0	8.0	1-1-3	16	No recovery]
-				SPT-5	6.0 - 7.5	1.0	3-5-8		possible due to coarse ground wedged	$\frac{1}{2}$
-						8.0	6-7-6	16	C	
F				SPT-7	9.0 - 10.5	0.0	8-7-5		-	-
_				SPT-8	10.5 - 12.0	0.4	4-3-5	15		
-				SPT-9	12.0 - 13.5	0.0	3-7-10			$\frac{1}{2}$
- 392.9	15.0			SPT-10	13.5 - 15.0	0.0	5-7-8		_	
 - -		Soil 2: MINESPO clay with sand, oli grayish brown with intermittent orange	ve gray to n e	SPT-11	15.0 - 16.5	1.5	WOT- WOT-3			_
		mottling, moist to to very stiff and wi heterogeneous mi coal, shale, and c fragments	ith ixture of	SPT-12	17.5 - 19.0	0.4	2-3-4	23		
				SPT-13	20.0 - 21.5	1.5	2-2-4		Wood fragments-	-
				SPT-14	22.5 - 24.0	1.5	WOT- WOT-3	34	Organics from 20' to 24'	
382.9	25.0								12/17	

Project I	Number	175569069			Location	P	aradise F	ossil Plant	
Project N	Name	TVA - PAF Peaboo	ly Ash Pond	<u> </u>	Boring No.	S	TN-4	Total Depth	1 <u>46.5 ft</u>
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
-		Soil 5: Lean clay, dark brown with or mottling, moist to to stiff and with oc chert fragments	range wet, soft	SPT-15	25.0 - 26.5	1.5	WOT-3		_ - -
-		ū		SPT-16	27.5 - 29.0	1.5	WOT-3	32	-
-				SPT-17	30.0 - 31.5	1.5	4-6-7		
-				SPT-18	32.5 - 34.0	1.5	4-5-7	27	-
_ 372.9	35.0	Soil 6: Silty clay, g	aray to						4
-		brownish gray with orange mottling, n wet, very soft to st some silt and trace	n some noist to tiff, with	SPT-19	35.0 - 36.5	1.5	4-5-7		-
-		sand and occasion of coal and chert f		SPT-20	37.5 - 39.0	1.5	2-2-4	30	-
-				SPT-21	40.0 - 41.5	1.5	3-4-4		-
-				SPT-22	42.5 - 44.0	1.5	WOT- WOT-3	57	-
_ 	46.5			SPT-23	45.0 - 46.5	1.5	1-WOT-2		-
NN ECHMSM_LEGACY 175699091-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		No Refusal / Bottom of Hole							- - - - -
, [Stanta	o Conqui	tina Services	Inc			12/17/09

Project	Number	175569069			Location	F	Paradise F	ossil Plant	
Project	Name	TVA - PAF Peaboo	dy Ash Pond		Boring No.		STN-5	Total Depth	46.5 ft
County		Muhlenberg			Surface Elev	vation	40	7.9 ft	
Project ¹	Туре	Geotechnical Expl	oration		Date Started	 d 9)/6/09	Completed	9/6/09
Supervis	sor	R. Riker Dr	iller J. Weth	nington	Depth to Wa	ater 1	2.0 ft	Date/Time	9/6/09
Logged	Ву	M. Jones			Depth to Wa	ater N	1/A	Date/Time	N/A
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
407.9	0.0	Top of Hole							
-		Soil 1: MINESPO clay with intermed lenses, brown to g	liate sand gray with	SPT-1	0.0 - 1.5	1.1	7-4-5	17	-
-		some reddish mot moist to wet, soft stiff and with	to very	SPT-2	1.5 - 3.0	8.0	6-6-8]
-		heterogeneous m coal, shale, and c fragments		SPT-3	3.0 - 4.5	0.9	2-4-4	20	-
- -				SPT-4	4.5 - 6.0	1.5	1-1-3		-
_				SPT-5	6.0 - 7.5	1.5	2-3-4	15	-
_				SPT-6	7.5 - 9.0	0.5	1-2-3		-
397.4	10.5			SPT-7	9.0 - 10.5	8.0	2-4-7		-
-		Soil 2: MINESPO clay with sand, oli grayish brown with	ve gray to	SPT-8	10.5 - 12.0	0.7	3-3-4	15	-
-		intermittent orangemottling, moist to to very stiff and wi	e wet, stiff	SPT-9	12.0 - 13.5	0.8	3-5-7	15	-
_		heterogeneous m coal, shale, and c fragments	ixture of	SPT-10	13.5 - 15.0	1.2	3-3-5		-
392.4	15.5	Soil 3: Bottom asl sand, black to dar		SPT-11	15.0 - 16.5	1.3	WOT	37	-
390.4	17.5	wet, loose to very and with fine to gr sized coal fragme Soil 2: MINESPO clay with sand, oli grayish brown with	loose ravel nts IL: Lean ve gray to	SPT-12	17.5 - 19.0	1.5	1-4-3		-
-		intermittent orange mottling, moist to to very stiff and wind heterogeneous micoal, shale, and c	e wet, stiff ith ixture of	SPT-13	20.0 - 21.5	1.3	2-5-4	20	- - -
		fragments		SPT-14	22.5 - 24.0	0.5	5-7-11		1
382.9	25.0								12/17/09

Project I	Number	175569069	P	aradise F	ossil Plant				
Project N	Name	TVA - PAF Peaboo	ly Ash Pond	<u> </u>	Boring No.	S	TN-5	Total Depth	46.5 ft
Litholo	gy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
-		Soil 5: Lean clay, dark brown with or mottling, moist to to stiff and with oc chert fragments	range wet, soft	SPT-15	25.0 - 26.5	1.5	5-7-9	26	-
-				SPT-16	27.5 - 29.0	1.5	WOT- WOT-2		-
-				SPT-17	30.0 - 31.5	1.5	2-3-6	25	- - -
-				SPT-18	32.5 - 34.0	1.5	2-5-7		-
_ - 	37.0			SPT-19	35.0 - 36.5	1.5	3-4-4	28	_ _ _
-		Soil 6: Silty clay, go brownish gray with orange mottling, nowet, very soft to stome silt and traces and and occasion	n some noist to tiff, with es of	SPT-20	37.5 - 39.0	1.5	3-4-4		-
_		of coal and chert f		SPT-21	40.0 - 41.5	0.0	1-2-3		_
-				SPT-22	42.5 - 44.0	1.5	1-2-3		- -
261.4	46.5								-
361.4 - - - -	46.5	No Refusal / Bottom of Hole							- - - - -
					ting Sondoos				12/17/0

Project	Number	175569069			Location	F	Paradise F	ossil Plant	
Project	Name	TVA - PAF Peaboo	dy Ash Pond		Boring No.		STN-6	Total Depth	n 35.4 ft
County		Muhlenberg			Surface Elev	vation	407	7.8 ft	
Project ²	Туре	Geotechnical Expl	oration		Date Started	_ 8 b	3/27/09	Completed	8/27/09
Supervis	sor	R. Riker Dr	iller J. Felts	<u> </u>	Depth to Wa	ater 1	1.0 ft	Date/Time	8/27/09
Logged	Ву	B. Bline			Depth to Wa	ater N	1/A	Date/Time	N/A
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
407.8	0.0	Top of Hole							
-		Soil 1: MINESPO clay with intermed lenses, brown to generated some reddish mot	liate sand gray with	SPT-1	0.0 - 1.5	0.7	11-9-8		_
-		moist to wet, soft to stiff and with heterogeneous mi	neterogeneous mixture of coal, shale, and chert			1.1	6-5-4	12	-
-		coal, shale, and c fragments	hert	SPT-3	3.0 - 4.5	0.6	3-3-3		Tube deformed -
-				ST-1	4.5 - 6.5				advanced 1.1' —
-				ST-2	6.5 - 8.5	1.3			-
398.3	9.5			SPT-4	8.0 - 9.5	0.4	23-10-10	13	-
-		Soil 4: Clayey sar to grayish brown, wet and loose to r dense	moist to	SPT-5	9.5 - 11.0	1.2	3-3-3		-
-				ST-3	11.0 - 13.0	2.0			-
-				SPT-6	13.5 - 15.0	1.5	0-0-0	21	_
391.3	16.5			SPT-7	15.0 - 16.5	0.7	0-0-1		-
19999000 TO 1999 TO 19		Soil 5: Lean clay, dark brown with o mottling, moist to to stiff and with oc chert fragments	range wet, soft	SPT-8	17.5 - 19.0	0.7	0-0-2	21	-
				SPT-9	20.0 - 21.5	1.1	0-1-3		- -
385.8	22.0								12/17/09

Project I	Project Number 175569069					P	aradise F	ossil Plant	
Project I	Name	TVA - PAF Peabod	y Ash Pond		Boring No.	S	TN-6	Total Depth	35.4 ft
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
_		Soil 6: Silty clay, go brownish gray with orange mottling, mowet, very soft to stome silt and traces and and occasion	n some noist to iff, with es of	SPT-10	22.5 - 24.0	0.9	0-0-0	28	
- -		of coal and chert f (Continued)		SPT-11	25.0 - 26.5	0.0	0-0-0		- -
-				SPT-12	27.5 - 29.0	1.5	0-0-2	26	-
- 377.0 -	30.8	Bedrock (augered)	-SPT-13	30.0 - 31.5	1.5	9-10-13		-
-				SPT-14	32.5 - 34.0	1.4	10-25-50	14	
_ 372.4	35.4			SPT-15	35.0 - 35.4		50+		_
-		No Refusal / Bottom of Hole							-
_ _ _		Top of Rock = 30. Elevation (377.0)	8						
<u>-</u>									-
-									-
-									-
_									
									-
			<u> </u>		ting Services				12/17/0

Project Nu	umber	175569069			Location	P	aradise F	ossil Plant	
Project Na	ame	TVA - PAF Peaboo	ly Ash Pond		Boring No.	S	TN-7	Total Depth	24.5 ft
County	_	Muhlenberg			Surface Elev	vation	40	1.4 ft	
Project Ty	/pe	Geotechnical Explo	oration		Date Started	8 t	/25/09	Completed	8/25/09
Supervisor	or	S. Lange Dr	iller J. Bow	erman	Depth to Wa	ater 1	3.0 ft	Date/Time	8/25/09
Logged By	у	S. Lange			Depth to Wa	ater N	l/A	Date/Time	N/A
Lithology	y		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
401.4	0.0	Top of Hole							_
399.9	1.5		to grayish brown, moist to wet and loose to medium			1.0	2-4-5	28	-
-		Soil 5: Lean clay, dark brown with or mottling, moist to	SPT-2	1.5 - 3.0	1.0	1-6-11		-	
_		to stiff and with oc chert fragments	casional	SPT-3	3.0 - 4.5	1.0	3-3-4	11	-
-				ST-1	4.5 - 6.5	1.3			-
				SPT-4	6.5 - 8.0	1.0	3-3-4		-
-				SPT-5	8.0 - 9.5	1.0	1-2-2	22	-
-				ST-2	9.5 - 11.5	1.7			
-				SPT-6	11.5 - 13.0	1.0	WOT		-
387.4	14.0			SPT-7	13.0 - 14.5	1.0	1-2-3	16	
	.5	Soil 6: Silty clay, of brownish gray with orange mottling, nowet, very soft to stome silt and traces and and occasion of coal and chert for the soil of the soil o	n some noist to iff, with es of nal traces	SPT-8	15.5 - 17.0	1.5	2-3-5		- - -
				SPT-9	18.0 - 19.5	1.0	4-5-3	19	- - -
_				SPT-10	20.5 - 22.0	1.3	8-12-17		12/17/05

Project I	Number	175569069			Location	Pa	aradise F	ossil Plant	
Project I	-	TVA - PAF Peabod	y Ash Pond	d	Boring No.		TN-7	Total Depth _	24.5 ft
Litholo	Depth	Description	Overburden Rock Core	Sample #	Depth Run	Rec. Ft.	Blows Rec. %	Mois.Cont. %	Remarks
Lievation	Берит	Description	NOCK COIE	NQD	Run	IXEC. I L.	1,66. 70	Run Deptin	Remarks
378.4	23.0	Dodoole (occored)							
376.9	24.5	Bedrock (augered)		SPT-11	23.0 - 24.5	1.3	13-28- 50+	7	
-		Auger Refusal / Bottom of Hole							_
-									
-									-
-									_
-									-
-									
									_
_									
-									-
-									-
-									
——————————————————————————————————————									_
C C C C C C C C C C C C C C C C C C C									
STANTICOFNISM_LEGACY 17588008.0PJ FNRM-GRAPHIC LOG-GBT 1271708									
5569069.GPJ									-
									-
TANTEC/FMSA									-

Project	Number	175569069			Location	F	aradise F	ossil Plant	
Project	Name	TVA - PAF Peaboo	dy Ash Pond		Boring No.	5	STN-8	Total Depth	35.9 ft
County		Muhlenberg			Surface Elev	vation	408	3.4 ft	
Project	Туре	Geotechnical Explo	oration		Date Started	8 b	/11/09	Completed	8/11/09
Supervi	sor	R. Riker Dr	iller M. Wet	hington	Depth to Wa	ater 1	2.0 ft	Date/Time	8/11/09
Logged	Ву	R. Riker	-		Depth to Wa	ater N	I/A	Date/Time	N/A
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
408.4	0.0	Top of Hole							
-		lenses, brown to g	lay with intermediate sand enses, brown to gray with ome reddish mottling, noist to wet, soft to very			0.6	106-6-8		-
-		moist to wet, soft to stiff and with	noist to wet, soft to very tiff and with eterogeneous mixture of oal, shale, and chert			8.0	3-5-9	15	-
-				SPT-3	3.0 - 4.5	1.2	3-3-6		-
-				SPT-4	4.5 - 6.0	0.9	4-4-8	15	Many shale — gravels from 4.5' to 6.0' —
-				SPT-5	6.0 - 7.5	0.9	3-9-12		-
_				SPT-6	7.5 - 9.0	0.2	3-8-4	14	-
-				SPT-7	9.0 - 10.5	1.5	2-5-9		-
ŀ				SPT-8	10.5 - 12.0	1.0	2-3-5	17	-
395.5	12.9	Soil 3: Bottom asl		SPT-9	12.0 - 13.5	1.4	4-13-14		-
- -		sand, black to dar wet, loose to very and with fine to gr sized coal fragme	loose avel	SPT-10	13.5 - 15.0	1.4	6-12-14	16	-
391.9	16.5			SPT-11	15.0 - 16.5	0.7	2-2-3		-
_		Soil 4: Clayey sar to grayish brown, wet and loose to r dense	moist to	SPT-12	17.5 - 19.0	0.5	1-1-2	16	- - -
				SPT-13	20.0 - 21.5	1.1	7-2-3		-

Project I	Number	175569069			Location	P	aradise F	ossil Plant	
Project N	Name	TVA - PAF Peaboo	ly Ash Pond		Boring No.	S	STN-8	Total Depth	35.9 ft
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
385.9 - 384.4	22.5	Soil 5: Lean clay, dark brown with or mottling, moist to to stiff and with occhert fragments	range wet, soft	SPT-14	22.5 - 24.0	1.5	WOT	28	-
-		Soil 6: Silty clay, of brownish gray with orange mottling, nowet, very soft to stoom some silt and trace	n some noist to tiff, with es of	SPT-15	25.0 - 26.5	1.5	WOT		- - -
-		sand and occasion of coal and chert f		SPT-16	27.5 - 29.0	1.3	8-6-16	20	-
<u>378.4</u> -	30.0	Bedrock (augered)	SPT-17	30.0 - 31.5	1.6	29-49-50		- - -
-				SPT-18	32.5 - 34.0	1.5	16-39-47	10	-
	35.9	No Refusal /		SPT-19	35.0 - 35.9	0.6	25-50+		<u>-</u>
-		Bottom of Hole Top of Rock = 30. Elevation (378.4)	0						- - -
PASAN-GARAH TIL LOG-GATI 1217/09									-
M. LEGALY 773099095.GFG									- - -
SIAN ECTANS					ting Sondoo				12/17/0

Project	Number	175569069			Location	F	aradise Fo	ossil Plant		\Box
Project	Name	TVA - PAF Peaboo	dy Ash Pond		Boring No.	S	STN-9	Total Depth	34.0 ft	
County		Muhlenberg			Surface Elev	vation_	407	7.8 ft		
Project ²	Туре	Geotechnical Explo	oration		Date Started	d 9	/1/09	Completed	9/1/09	
Supervis	sor	R. Riker Dr	iller J. Weth	nington	Depth to Wa	ater 1	3.0 ft	Date/Time	9/1/09	
Logged	Ву	M. Jones			Depth to Wa	ater N	I/A	Date/Time	N/A	
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %		\exists
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks	\perp
407.8	0.0	Top of Hole								
-		clay with intermed lenses, brown to g	stiff and with			0.3	4-5-6	14		_
-		moist to wet, soft t stiff and with heterogeneous mi	moist to wet, soft to very stiff and with heterogeneous mixture of coal, shale, and chert			0.6	5-5-11			
-		coal, shale, and cl fragments	SPT-3	3.0 - 4.5	1.0	4-7-5	15		-	
-			SPT-4	4.5 - 6.0	0.7	4-5-4				
-						1.2	4-7- 50/0.4	16		-
-				SPT-6	7.5 - 9.0				Boulders from 7.0' to 9.0'	
-				SPT-7	9.0 - 10.5	0.2	14-13-10			\dashv
_				SPT-8	10.5 - 12.0	0.9	6-9-9	15		_
394.8	13.0	Soil 3: Bottom asl	h with	SPT-9	12.0 - 13.5	1.1	6-13-25	16		-
-		sand, black to dar wet, loose to very and with fine to gr	loose avel	SPT-10	13.5 - 15.0	1.5	21-36-31			
_		sized coal fragme	nis	SPT-11	15.0 - 16.5	1.5	5-6-10	16		_
				SPT-12	17.5 - 19.0	1.3	1-WOT			-
387.8	20.0			SPT-13	20.0 - 21.5	1.2	WOT	26		

Project N	Number	175569069			Location	P	aradise F	ossil Plant	
Project N	Name	TVA - PAF Peaboo	ly Ash Pond		Boring No.	S	TN-9	Total Depth	34.0 ft
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
-		Soil 5: Lean clay, dark brown with o mottling, moist to to stiff and with ochert fragments (Continued)	range wet, soft	SPT-14	22.5 - 24.0	1.5	WOT-1		-
-				SPT-15	25.0 - 26.5	1.5	4-6-8	19	-
380.8	27.0	Bedrock (augered)	-					-
-				SPT-16	27.5 - 29.0	1.5	7-37-62		-
- - -				SPT-17	30.0 - 31.5	1.5	14-54-50	13	<u>-</u> -
- 373.8	34.0			SPT-18	32.5 - 34.0	1.5	17-54-50		-
		No Refusal / Bottom of Hole							_
-		Top of Rock = 27. Elevation (380.8)	0						-
_									-
-									-
									_
									-
									-
930000000									-
SIANIELI FILORIA LECENA									-

Project	Number	175569069			Location	F	Paradise F	ossil Plant	
Project	Name	TVA - PAF Peaboo	dy Ash Pond		Boring No.	S	STN-11	Total Depth	45.3 ft
County	•	Muhlenberg			Surface Elev	vation	408	3.4 ft	
Project ²	Туре	Geotechnical Expl	oration		Date Started	8 b	3/11/09	Completed	8/11/09
Supervi	sor	R. Riker Dr	iller M. Wet	hington	Depth to Wa	ater 1	3.5 ft	Date/Time	8/11/09
Logged	Ву	R. Riker			Depth to Wa	ater N	I/A	Date/Time	N/A
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
408.4	0.0	Top of Hole							
-		clay with intermed lenses, brown to g	Soil 1: MINESPOIL: Lean clay with intermediate sand lenses, brown to gray with some reddish mottling, moist to wet, soft to very			0.9	6-7-7		-
-		moist to wet, soft to stiff and with	SPT-2	1.5 - 3.0	3.9	7-6-8	13	- -	
-		heterogeneous m coal, shale, and c fragments		SPT-3	3.0 - 4.5	0.9	10-7-7		-
-				SPT-4	4.5 - 6.0	0.7	4-30-8	12	-
-				SPT-5	6.0 - 7.5	0.4	3-6-10		-
-				SPT-6	7.5 - 9.0	0.1	6-4-5	11	-
-				SPT-7	9.0 - 10.5	0.5	3-6-2		_
<u>-</u>				SPT-8	10.5 - 12.0	0.6	4-4-5	17	-
394.9	13.5			SPT-9	12.0 - 13.5	1.1	7-8-11		-
<u>-</u>		Soil 3: Bottom asl sand, black to dar wet, loose to very	k brown,	SPT-10	13.5 - 15.0	1.5	9-13-14	14	- -
-		and with fine to gr sized coal fragme		SPT-11	15.0 - 16.5	1.5	10-7-8		-
390.9	17.5								-
- - 388.4	20.0	Soil 4: Clayey sar to grayish brown, wet and loose to r dense	moist to	SPT-12	17.5 - 19.0	0.5	1-2-1	22	- -
385.9	22.5	Soil 3: Bottom asl sand, black to dar wet, loose to very and with fine to graphics sized coal fragme	k brown, loose avel	SPT-13	20.0 - 21.5	0.4	1-1-1		- - -
_ _ _		OZOG GOGI ITAGINE		SPT-14	22.5 - 24.0	1.5	1-2-3	24	- -
					ting Sondoos				12/17/09

Project I	Number	175569069					aradise F	ossil Plant	
Project I	Name	TVA - PAF Peabod	y Ash Pond	<u> </u>	Boring No.	S	STN-11	Total Depth	45.3 ft
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
-		Soil 6: Silty clay, go brownish gray with orange mottling, maket, very soft to st	n some noist to iff, with	SPT-15	25.0 - 26.5	1.5	2-4-6		- -
-		some silt and trace sand and occasion of coal and chert f (Continued)	nal traces	SPT-16	27.5 - 29.0	1.4	3-4-6	27	-
378.4	30.0	Soil 4: Clayey san to grayish brown, wet and loose to n dense	moist to	SPT-17	30.0 - 31.5	1.3	3-4-8		- - -
-				SPT-18	32.5 - 34.0	1.5	6-8-10	16	-
373.4 	35.0	Soil 6: Silty clay, g brownish gray with orange mottling, m wet, very soft to st	n some noist to iff, with	SPT-19	35.0 - 36.5	1.1	2-6-13		- - -
-		some silt and trace sand and occasion of coal and chert f	nal traces	SPT-20	37.5 - 39.0	1.3	16-30-45	17	-
368.4	40.0	Bedrock (augered)	SPT-21	40.0 - 41.0	0.8	11-50+		-
-				SPT-22	42.5 - 43.5	0.5	50+	8	- - -
- 363.1	45.3	N. D. (. 1/		SPT-23	45.0 - 45.3	0.3	50+		
DT 12/17/09		No Refusal / Bottom of Hole							_
RAPHIC LOG.G		Top of Rock = 40. Elevation (368.4)	0						_
GPJ FMSM-C									-
ACY 175569C									
STANTEC/FMSM_LEC									12/17/0

Project I	Number	175569069		Location	 Р	aradise F	ossil Plant		
Project I		TVA - PAF Peaboo	ly Ash Pond		Boring No.	S	TN-12	Total Depth	46.5 ft
County		Muhlenberg			Surface Elev	vation	408	8.5 ft	
Project ⁻	Туре	Geotechnical Explo	oration		Date Started	8 t	/17/09	Completed	8/18/09
Supervis	sor	R. Riker Dr	iller J. Felts	3	Depth to Wa	ater 1	4.4 ft	Date/Time	8/18/09
Logged	Ву	B. Bline			Depth to Wa	ater N	l/A	Date/Time	N/A
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
408.5	0.0	Top of Hole							
- - -		Soil 1: MINESPO clay with intermed lenses, brown to g some reddish mot moist to wet, soft t stiff and with heterogeneous mi	SPT-1	0.0 - 1.5 3.0 - 4.5	1.2 0.3	7-9-8 37-11-4	2	- - -	
-		coal, shale, and cl fragments	nert	01 1-2	0.0 - 4.0	0.5	07-11-4	_	-
-		g		SPT-3	4.5 - 6.0	1.1	4-4-7		-
_				ST-1	6.0 - 8.0	2.0			-
-				SPT-4	8.0 - 9.5	1.5	2-4-2	15	
-				SPT-5	9.5 - 11.0	0.8	0-1-7		-
 - -				SPT-6	11.0 - 12.5	1.1	2-4-7	14	-
394.1	14.4								-
		Soil 3: Bottom ask sand, black to dar wet, loose to very and with fine to gr sized coal fragmen	k brown, loose avel	SPT-7	15.0 - 16.5	1.2	7-16-7		- - -
_				SPT-8	18.5 - 20.0	0.1	3-1-0	20	- -
387.0	21.5								-
				SPT-9	22.5 - 24.0	1.5	0-0-0		- - -
		<u> </u>	Stanted	Consul	ting Services	Inc.	l		12/17/09

Project I	Number	175569069		Location	P	aradise F	ossil Plant		
Project I	Name	TVA - PAF Peabod	y Ash Pond	<u> </u>	Boring No.	S	TN-12	Total Depth	1 46.5 ft
Litholo	nav		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
_ - - -		Soil 6: Silty clay, go brownish gray with orange mottling, m wet, very soft to st some silt and trace sand and occasion of coal and chert for (Continued)	n some noist to iff, with es of nal traces	ST-2 SPT-10	25.0 - 27.0 27.5 - 29.0	2.0	0-0-0	22	-
- - 376.5	32.0			SPT-11	30.0 - 31.5	1.5	0-1-6		-
-	62.0	Soil 5: Lean clay, dark brown with or mottling, moist to v to stiff and with occ chert fragments	range wet, soft	SPT-12	32.5 - 34.0	1.5	4-16-24	18	- - -
-				SPT-13	35.0 - 36.5	0.9	6-10-14		_
- -				SPT-14	37.5 - 39.0	1.5	6-9-15	17	-
368.5 - -	40.0	Soil 6: Silty clay, go brownish gray with orange mottling, mowet, very soft to st some silt and trace	n some noist to iff, with	SPT-15	40.0 - 41.5	0.7	0-6-5		- -
-		sand and occasior of coal and chert fi	nal traces	SPT-16	42.5 - 44.0	0.8	4-9-10	18	-
	45.9 46.5	_ Bedrock (augered) _	SPT-17	45.0 - 46.0	0.9	23-50-0.4		_
		No Refusal / Bottom of Hole Top of Rock = 45.9 Elevation (362.6)							- - - -

Project	Number	175569069			Location	F	Paradise F	ossil Plant	
Project	Name	TVA - PAF Peaboo	dy Ash Pond		Boring No.	S	STN-14	Total Depth	38.2 ft
County		Muhlenberg			Surface Elev	vation	408	3.3 ft	
Project ²	Туре	Geotechnical Expl	oration		Date Started	8 b	3/11/09	Completed	8/11/09
Supervi	sor	R. Riker Dr	iller J. Felts	;	Depth to Wa	ater 1	4.5 ft	Date/Time	8/11/09
Logged	Ву	B. Bline			Depth to Wa	ater N	I/A	Date/Time	N/A
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
408.3	0.0	Top of Hole							
-		Soil 1: MINESPO clay with intermed lenses, brown to get some reddish mot	liate sand gray with	SPT-1	0.0 - 1.5	1.1	4-5-4		-
-		moist to wet, soft to stiff and with heterogeneous mi	moist to wet, soft to very stiff and with heterogeneous mixture of coal, shale, and chert			0.8	2-2-3	17	-
-		coal, shale, and c fragments	hert	SPT-3	3.0 - 4.5	1.4	5-3-6		-
-				SPT-4	4.5 - 6.0	1.5	4-4-5	14	
_				SPT-5	6.0 - 7.5	1.3	3-3-3		-
-				SPT-6	7.5 - 9.0	1.2	4-6-10	10	-
_				SPT-7	9.0 - 10.5	1.3	4-3-5		-
-				SPT-8	10.5 - 12.0	1.7	6-6-8	11	-
394.8	13.5	Ocil 2: Dottom col	L	SPT-9	12.0 - 13.5	0.3	18-12-14		-
-		Soil 3: Bottom asl sand, black to dar wet, loose to very and with fine to gr	k brown, loose	SPT-10	13.5 - 15.0	1.5	8-10-12	15	-
_		sized coal fragme		SPT-11	15.0 - 16.5	1.5	8-9-11		-
_				SPT-12	17.5 - 19.0	1.2	4-6-6	14	- - -
				SPT-13	20.0 - 21.5	0.0	0-0-0		-
				_	tina Continos				12/17/09

Project	Number	175569069	Location	Paradise Fossil Plant					
Project	Name	TVA - PAF Peabody Ash Pond			Boring No.	S	TN-14	Total Depth	38.2 ft
Lithol	ogy	Overburden Samp		Sample #	Depth	Rec. Ft. Blows		Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
-		Soil 3: Bottom ash sand, black to dark wet, loose to very and with fine to grasized coal fragmer (Continued)	c brown, loose avel	SPT-14	22.5 - 24.0	0.5	0-0-0	23	- -
-				SPT-15	25.0 - 26.5	1.0	0-0-0		-
380.8	27.5	Soil 4: Clayey san to grayish brown, i wet and loose to m dense	noist to	SPT-16	27.5 - 29.0	0.7	0-1-0	21	- - -
_				SPT-17	30.0 - 31.5	1.0	0-1-4		-
375.8	32.5	Soil 6: Silty clay, go brownish gray with orange mottling, mut, very soft to st	some loist to iff, with	SPT-18	32.5 - 34.0	0.8	4-6-12	18	- -
-		some silt and trace sand and occasior of coal and chert fi Shale, light gray, v bedded	al traces agments	SPT-19	35.0 - 36.5	0.5	35-50-0.2		<u>-</u> - -
- 370.1	38.2			SPT-20	37.5 - 38.2	0.7	40-50-0.2	11	-
NATECHMSM_LEGACY 178569089 GPJ FMSM_GRAPHO LOG.GOT 1277/09		Auger Refusal / Bottom of Hole Top of Rock = 38.2 Elevation (370.1)	2						-
ō			<u> </u>		ting Services				12/17/

Project I	Project Number 175569069			Location Paradise Fossil Plant					
Project I	Name	TVA - PAF Peabody Ash Pond			Boring No. STN-15			Total Depth	n35.9 ft
County	unty Muhlenberg			Surface Elevation 407.9 ft					
Project ⁻	Project Type Geotechnical Exploration			Date Started 8/25/09		/25/09	Completed	8/25/09	
Supervis	sor	R. Riker Dri	iller J. Felts	.	Depth to Wa	ater 1	4.0 ft	Date/Time	8/25/09
Logged	Ву	B. Bline			Depth to Wa	ater N	I/A	Date/Time	N/A
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
407.9	0.0	Top of Hole							
-		Soil 1: MINESPOI clay with intermed lenses, brown to g some reddish mot	iate sand ray with	SPT-1	0.0 - 1.5	1.1	12-12-10	9	-
-		moist to wet, soft to very stiff and with heterogeneous mixture of		SPT-2	1.5 - 3.0	1.3	8-7-6		-
-		coal, shale, and cl fragments	coal, shale, and chert		3.0 - 4.5	0.9	4-5-5	8	-
-				ST-1	4.5 - 6.5	1.7			Bottom of tube is—wet
-				SPT-4	6.5 - 8.0	1.5	12-29-8		Shale cobble - from 7.0' to 7.5'
-				SPT-5	8.0 - 9.5	1.0	2-5-9	13	-
-				SPT-6	9.5 - 11.0	1.2	1-3-6		-
_				ST-2	11.0 - 13.0	1.5			_
393.9	14.0								
		Soil 3: Bottom ash sand, black to dark	-	SPT-7	13.5 - 15.0	0.9	0-4-6	21	
		wet, loose to very and with fine to gra sized coal fragmen	loose avel	SPT-8	15.0 - 16.5	0.9	1-3-5		_
390.4	17.5								-
20000001747		Soil 6: Silty clay, g brownish gray with orange mottling, m wet, very soft to st some silt and trace	n some noist to iff, with	SPT-9	17.5 - 19.0	0.6	1-1-2	20	- -
NATION NOW LEGACY 17		sand and occasion of coal and chert f	nal traces	SPT-10	20.0 - 21.5	1.3	0-1-4		-
L			011-		ting Services	<u> </u>			12/17/09

Project N	Number	175569069			Location	P			
Project N	Name	TVA - PAF Peabody Ash Pond			Boring No.	S	TN-15	Total Depth	35.9 ft
Litholo	ogy	Overburden		Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
-		Soil 6: Silty clay, go brownish gray with orange mottling, met, very soft to st some silt and traces and and occasion	n some noist to iff, with es of	SPT-11	22.5 - 24.0	1.5	2-0-0	24	
-		of coal and chert f (Continued)		SPT-12	25.0 - 26.5	1.1	1-0-0		-
-				SPT-13	27.5 - 29.0	1.5	0-0-2	17	
_ - 375.9	32.0			SPT-14	30.0 - 31.5	1.5	3-5-8		
-		Bedrock (augered)	SPT-15	32.5 - 34.0	0.9	21-50-0.4	13	
	35.9	No Refusal /		SPT-16	35.0 - 35.9	0.9	20-50-0.4		-
-		Bottom of Hole Top of Rock = 32. Elevation (375.9)	0						- -
- - -									- - -
- -									
-					ting Services				12/17/

Project Number _ 175569069				Location	P	aradise Fo	ossil Plant		
Project Name		TVA - PAF Peabody Ash Pond			Boring No.	S	STN-16	Total Depth	24.5 ft
County		Muhlenberg			Surface Elev	ation_	400).1 ft	
Project 7	Гуре	Geotechnical Exploration			Date Started	l8	/25/09	Completed	8/25/09
Supervis	or	S. Lange Driller J. Bowerman			Depth to Wa	iter 1	4.0 ft	Date/Time	8/25/09
Logged	Ву	S. Lange			Depth to Wa	iter N	//A	Date/Time	N/A
Litholo	gy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
400.1	0.0	Top of Hole							-
-		Soil 2: MINESPOI clay with sand, oliv grayish brown with intermittent orange	ve gray to n	SPT-1	0.0 - 1.5	1.0	2-3-6		_
-		moist to wet, stiff to and with heteroge mixture of coal, sh	o very stiff neous	SPT-2	1.5 - 3.0	1.0	7-8-5	11	-
- 395.1	5.0	chert fragments		SPT-3	3.0 - 4.5	1.0	2-3-3		_
- 393.1	3.0	Soil 6: Silty clay, g brownish gray with orange mottling, n	n some noist to	ST-1	4.5 - 6.5	2.0			-
-		wet, very soft to st some silt and trace sand and occasion of coal and chert f	es of nal traces	SPT-4	6.5 - 8.0	1.3	1-3-3	17	-
-				SPT-5	8.0 - 9.5	0.5	WOT-1-1		-
-				ST-2	9.5 - 11.5	2.0			_
-				SPT-6	11.5 - 13.0	1.3	WOT-1-1	24	-
-			SPT-7	13.0 - 14.5	1.3	WOT- WOT-1		-	
-			SPT-8	15.5 - 17.0	1.3	WOT	28	- - -	
_				SPT-9	18.0 - 19.5	1.0	1-4-8		- -
-				SPT-10	20.5 - 22.0	1.3	13-15-15	14	12/22/0

Project	Number	175569069			Location	Pa			
Project	Name	TVA - PAF Peabod	Boring No.	STN-16		Total Depth	24.5 ft		
Lithol	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
- 376.1	24.0			SPT-11	23.0 - 24.5	1.3	36-30		
375.6	24.5	Bedrock (augered))						
-		No Refusal / Bottom of Hole Top of Rock = 24.0 Elevation (376.1)	0						
-									
L									
_									
_									
_									
-									
-									
_									
_									
-									
_									
-									
- - -									
L									

Project Number 175569069					Location	F	Paradise F	ossil Plant	
Project I	Name	TVA - PAF Peabody Ash Pond			Boring No. STN-17		Total Depth	n 46.5 ft	
County		Muhlenberg			Surface Elevation 40		7.8 ft		
Project ⁻	Гуре	Geotechnical Exploration			Date Started 8/11/09		3/11/09	Completed	8/12/09
Supervis	sor	R. Riker Driller J. Felts			Depth to Wa	ater 2	25.0 ft	Date/Time	8/12/09
Logged	Ву	B. Bline		Depth to Wa	ater N	N/A	Date/Time	N/A	
Litholo	gy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
407.8	0.0	Top of Hole							-
-		Soil 1: MINESPO clay with intermed lenses, brown to g	liate sand gray with	SPT-1	0.0 - 1.5	1.4	6-12-4	10	-
-		some reddish mottling, moist to wet, soft to very stiff and with		SPT-2	1.5 - 3.0	1.5	7-8-9		- -
_		heterogeneous m coal, shale, and c fragments		SPT-3	3.0 - 4.5	1.5	2-4-3	14	-
- -				SPT-4	4.5 - 6.0	1.5	4-13-12		Shale cobble — from 5.2' to 5.7'
-				SPT-5	6.0 - 7.5	1.5	5-6-8	11	-
<u>-</u>				SPT-6	7.5 - 9.0	1.2	2-4-5		-
-				SPT-7	9.0 - 10.5	1.2	3-5-8	13	-
- 395.8	12.0			SPT-8	10.5 - 12.0	1.5	3-6-12		-
-		Soil 4: Clayey sar to grayish brown, wet and loose to r	moist to	SPT-9	12.0 - 13.5	1.5	3-7-7	12	-
392.8	15.0	dense		SPT-10	13.5 - 15.0	1.5	2-3-6		-
-		Soil 5: Lean clay, dark brown with o mottling, moist to to stiff and with oc chert fragments	range wet, soft	SPT-11	15.0 - 16.5	1.5	3-6-7	16	-
_		-		SPT-12	17.5 - 19.0	1.5	3-3-5		-
-	00.5			SPT-13	20.0 - 21.5	1.5	2-3-3	23	-
385.3	22.5			SPT-14	22.5 - 24.0	0.8	0-1-2		- -
					ting Sondoos				12/17/09

Page: 2 of 2

Project I	Number	175569069			Location	_ Pa	aradise F	ossil Plant	
Project I	Name	TVA - PAF Peaboo	ly Ash Pond		Boring No.	S	TN-17	Total Depth	46.5 ft
Litholo	av		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
-	Зори	Soil 6: Silty clay, gray to brownish gray with some orange mottling, moist to wet, very soft to stiff, with			25.0 - 26.5	1.5	5-8-8	21	-
-		some silt and trace sand and occasion of coal and chert f (Continued)	nal traces	SPT-16	27.5 - 29.0	1.5	2-4-7		-
- -				SPT-17	30.0 - 31.5	1.5	1-4-5	24	-
-				SPT-18	32.5 - 34.0	1.5	1-3-4		-
- - -				SPT-19	35.0 - 36.5	1.5	0-0-0	35	-
-				SPT-20	37.5 - 39.0	1.5	0-0-0		-
- - -				SPT-21	40.0 - 41.5		0-0-1	30	-
-				SPT-22	42.5 - 44.0	1.5	1-0-1		-
	46.5	No Defined /		SPT-23	45.0 - 46.5	1.5	0-1-2	30	
		No Refusal / Bottom of Hole							-
									-
									12/17/09

Page: 1 of 2

Project I	Number	175569069			Location	F	Paradise F	ossil Plant	
Project I	Name	TVA - PAF Peaboo	ly Ash Pond		Boring No.	- 5	STN-18	Total Depth	46.5 ft
County		Muhlenberg			Surface Elev	vation	408	8.0 ft	
Project ⁻	Туре	Geotechnical Expl	oration		Date Started	B	3/13/09	Completed	8/14/09
Supervis	sor	R. Riker Dr	iller J. Felts		Depth to Water 20.0 ft			Date/Time	8/14/09
Logged	Ву	B. Bline			Depth to Wa	ater N	1/A	Date/Time	N/A
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
408.0	0.0	Top of Hole							
-		Soil 1: MINESPO clay with intermed lenses, brown to g some reddish mot moist to wet, soft	iate sand gray with tling,	SPT-1	0.0 - 1.5	1.1	6-11-7		-
-		stiff and with heterogeneous m coal, shale, and c		ST-1	2.0 - 4.0	1.3			-
402.5	5.5	fragments		SPT-2	4.0 - 5.5	1.1	2-3-4	15	
- 401.0	7.0	Soil 4: Clayey sar to grayish brown, wet and loose to r	moist to	SPT-3	5.5 - 7.0	1.2	1-2-4		-
_		\dense / Soil 5: Lean clay, light to dark brown with orange		ST-2	7.0 - 9.0	1.3			-
_		mottling, moist to to stiff and with occhert fragments		SPT-4	9.0 - 10.5	0.9	0-0-2	19	-
-				SPT-5	10.5 - 12.0	0.3	0-0-0		
-				SPT-6	12.0 - 13.5	1.5	0-1-1	23	-
-				SPT-7	13.5 - 15.0	1.5	0-1-1		-
-				SPT-8	15.0 - 16.5	1.2	0-1-2	22	-
				SPT-9	17.5 - 19.0	1.5	0-2-2		- - -
				SPT-10	20.0 - 21.5	1.5	0-0-0	26	-
				SPT-11	22.5 - 24.0	1.5	2-7-8		-
					ting Sondoos	_			12/17/09

Page: 2 of 2

Project I	Number	175569069			Location Paradise Fossil Plant					
Project I	Name	TVA - PAF Peaboo	ly Ash Pond	<u> </u>	Boring No.	S	TN-18	Total Depth	46.5 ft	
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %		
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks	
-				ST-3	24.0 - 26.0	2.0			-	
381.0 - -	27.0	Soil 6: Silty clay, go brownish gray with orange mottling, nowet, very soft to stoome silt and trace	n some noist to tiff, with es of	SPT-12	27.5 - 29.0	1.5	0-2-2		-	
-		sand and occasion of coal and chert f		SPT-13	30.0 - 31.5	1.5	1-3-4	29	- -	
-				SPT-14	32.5 - 34.0	1.5	0-2-2		-	
-				SPT-15	35.0 - 36.5	1.5	0-1-2	44	<u>-</u> - -	
-				SPT-16	37.5 - 39.0	1.5	0-0-1		-	
-				SPT-17	40.0 - 41.5	1.5	0-0-0	20	<u>-</u> -	
-				SPT-18	42.5 - 44.0	1.3	0-0-0		-	
	46.5			SPT-19	45.0 - 46.5	1.5	0-0-0	25	-	
LEGACY Yosasasaska's PRSRIASRAPHIC LOCKOL		No Refusal / Bottom of Hole							- - - -	
STANTE-PRISM_LEGACY					ting Sorvings				- 12/17/0	

Page: 1 of 3

Project	Number	175569069			Location	F	Paradise F	ossil Plant	
Project	Name	TVA - PAF Peaboo	dy Ash Pond		Boring No.	5	STN-20	Total Depth	n65.7 ft
County		Muhlenberg			Surface Elev	vation_	408	3.3 ft	
Project	Туре	Geotechnical Explo	oration		Date Started	8 t	3/12/09	Completed	8/13/09
Supervi	sor	R. Riker Dr	iller J. Felts	<u>. </u>	Depth to Water 27.0 ft		Date/Time	8/12/09	
Logged	Ву	B. Bline			Depth to Wa	ater N	I/A	Date/Time	N/A
Lithol	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
408.3	0.0	Top of Hole							_
-		Soil 1: MINESPO clay with intermed lenses, brown to gome reddish mot	liate sand gray with	SPT-1	0.0 - 1.5	1.1	8-4-9	10	-
_		moist to wet, soft stiff and with heterogeneous m	ixture of	SPT-2	1.5 - 3.0	1.4	5-8-6		-
-		coal, shale, and c fragments	nert	SPT-3	3.0 - 4.5	1.5	6-11-9	10	-
-				SPT-4	4.5 - 6.0	1.5	7-11-12		-
_				SPT-5	6.0 - 7.5	1.5	6-4-4	14	-
-				SPT-6	7.5 - 9.0	1.5	3-5-6		-
-				SPT-7	9.0 - 10.5	1.5	3-7-8	12	-
-				SPT-8	10.5 - 12.0	1.5	3-6-8		- Shale/Coal -
395.3	13.0	Soil 5: Lean clay,		SPT-9	12.0 - 13.5	1.2	1-1-1	17	fragments from 12.0' to 12.4' –
-		dark brown with o mottling, moist to to stiff and with oc chert fragments	wet, soft	SPT-10	13.5 - 15.0	1.1	0-0-0		-
_		Chert fragments		SPT-11	15.0 - 16.5	1.5	0-0-0	23	-
				SPT-12	17.5 - 19.0	0.0	0-1-2		- - -
				SPT-13	20.0 - 21.5	0.4	0-0-2	20	Some angular — gravel from 20.0' to 22.5' —

Page: 2 of 3

Project N	Number	175569069			Location	P	aradise Fo	ossil Plant	
Project N	Name	TVA - PAF Peaboo	ly Ash Pond	<u> </u>	Boring No.	S	TN-20	Total Dept	h 65.7 ft
Litholo	gy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
-		Soil 5: Lean clay, dark brown with or mottling, moist to stiff and with occhert fragments (Continued)	range wet, soft	SPT-14	22.5 - 24.0	1.1	2-3-3		-
-				SPT-15	25.0 - 26.5	1.5	1-2-3	18	-
380.8 	27.5	Soil 4: Clayey sar to grayish brown, wet and loose to n dense	moist to	SPT-16	27.5 - 29.0	1.4	12-18-19		Sandy clay form - 27.7' to 35.5'
-				SPT-17	30.0 - 31.5	1.5	2-5-6	19	-
- -				SPT-18	32.5 - 34.0	1.5	3-3-5		-
373.3	35.0	Soil 6: Silty clay, g brownish gray with orange mottling, n wet, very soft to st	n some noist to	SPT-19	35.0 - 36.5	1.5	1-2-2	21	-
-		some silt and trace sand and occasion of coal and chert f	es of nal traces	SPT-20	37.5 - 39.0	1.5	0-0-0		- - -
				SPT-21	40.0 - 41.5	1.5	0-0-0	33	-
-				SPT-22	42.5 - 44.0	1.5	0-0-0	-	- - -
_				SPT-23	45.0 - 46.5	1.5	1-1-2	26	12/17/0

Page: 3 of 3

Project I	Number	175569069			Location Paradise Fossil Plant				
Project I	Name	TVA - PAF Peaboo	ly Ash Pond		Boring No.	S	TN-20	Total Depth	n65.7 ft
Litholo	anv.		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation		Description					Rec. %	Run Depth	Remarks
Elevation	Depth	Soil 6: Silty clay, go brownish gray with orange mottling, nowet, very soft to stand and occasion of coal and chert for (Continued)	n some noist to tiff, with es of nal traces	SPT-24	Run 55.0 - 56.5	1.1	Rec. %	Run Depth	Remarks -
- - -		Shale, light gray, moderately hard, weathered							
	65.7				5.5	5.5	100	65.7	_
342.0	05.7	Bottom of Hole Top of Rock = 60. Elevation (348.1)	2		ა.ა	0.0	100	00.7	- - - -

Page: 1 of 2

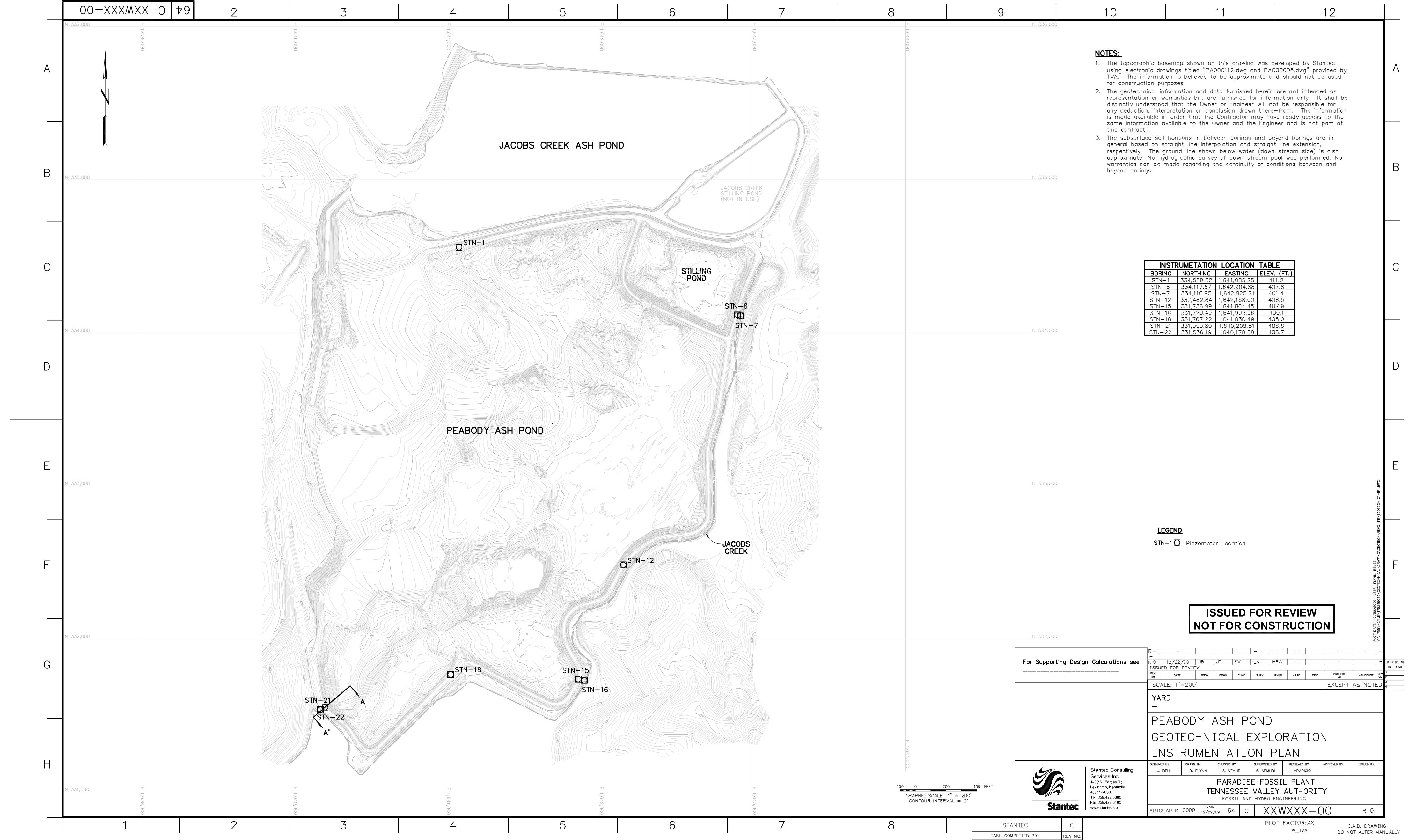
Project I	Number	175569069			Location	P	aradise F	ossil Plant	
Project I	Name	TVA - PAF Peaboo	ly Ash Pond		Boring No.	S	TN-21	Total Depth	n46.5 ft
County	_	Muhlenberg			Surface Elev	vation	408	3.6 ft	
Project ⁻	Туре	Geotechnical Explo	oration		Date Started	d8	/15/09	Completed	8/17/09
Supervis	sor	R. Riker Dri	iller J. Felts	i	Depth to Wa	ater 4	2.5 ft	Date/Time	8/17/09
Logged	Ву	B. Bline			Depth to Wa	ater N	/A	Date/Time	N/A
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
408.6	0.0	Top of Hole							
-		soil 1: MINESPOI clay with intermed lenses, brown to g some reddish mot moist to wet, soft t stiff and with	SPT-1	0.0 - 1.5 2.0 - 4.0	1.1	9-11-11		- -	
		heterogeneous mi coal, shale, and cl		01-1	2.0 - 4.0	2.0			
_		fragments	iort	SPT-2	4.0 - 5.5	1.5	4-9-15	12	-
-				SPT-3	5.5 - 7.0	1.4	3-6-8		-
_				ST-2	7.0 - 8.5	1.1			-
 -				ST-3	8.5 - 10.5	1.4			-
_				SPT-4	10.5 - 12.0	0.9	1-3-3	13	-
-				SPT-5	12.0 - 13.5	1.2	1-2-3		-
-				SPT-6	13.5 - 15.0	1.2	3-2-1	13	-
-				SPT-7	15.0 - 16.5	1.4	2-4-8		-
391.1	17.5	Soil 4: Clayey sar to grayish brown, wet and loose to n dense	moist to	SPT-8	17.5 - 19.0	1.5	2-4-4	15	- - -
				SPT-9	20.0 - 21.5	1.5	2-3-4		-
				SPT-10	22.5 - 24.0	1.4	6-11-10	10	Sandstone this spoon only -
			Ctanta		tina Services	Inc	<u> </u>	I	12/17/09

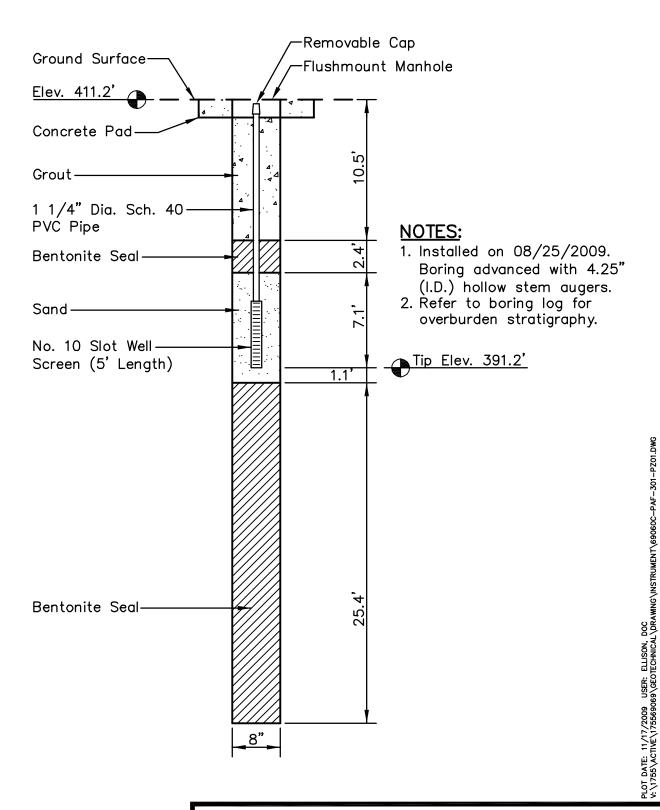
Page: 2 of 2

Project N	Number	175569069			Location Paradise Fossil Plant				
Project I	Name	TVA - PAF Peaboo	ly Ash Pond	<u> </u>	Boring No.	S	TN-21	Total Dept	h46.5 ft
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
-		Soil 4: Clayey sar to grayish brown, wet and loose to n dense (Continue	moist to nedium	SPT-11	25.0 - 26.5	1.4	2-4-4		- - -
-				SPT-12	27.5 - 29.0	1.4	1-3-6	13	-
				SPT-13	30.0 - 31.5	1.5	8-12-12		-
-				SPT-14	32.5 - 34.0	1.5	4-7-12	14	<u>-</u>
-				SPT-15	35.0 - 36.5	1.1	4-7-10		Decomposed – sandstone in spoon tip –
-				SPT-16	37.5 - 39.0	1.4	5-8-7	11	High percentage - of shale fragments -
368.6	40.0	Soil 6: Silty clay, g brownish gray with orange mottling, n wet, very soft to st	n some noist to	SPT-17	40.0 - 41.5	1.5	3-6-6		– Decomposing –
-		some silt and trace sand and occasion of coal and chert f	es of nal traces	SPT-18	42.5 - 44.0	1.3	3-7-5	19	weathered shale from 42.5' to – 46.5'
	46.5			SPT-19	45.0 - 46.5	1.1	7-4-8		-
STANTEC/FMSN_LEGACY 175680089 GPJ FMSN_GRAPHIC LOG GDJ 1271709		No Refusal / Bottom of Hole							- - - -
STANTEC			Stanta	Conquit	ting Services	Ino			12/17/09

Page: 1 of 2

Project N	lumber	175569069			Location	F	Paradise Fo	ossil Plant	
Project N	lame	TVA - PAF Peabod	y Ash Pond		Boring No.		STN-22	Total Depth	n30.0 ft
County	_	Muhlenberg			Surface Elev	ation_	405	5.7 ft	
Project T	уре	Geotechnical Explo	ration		Date Started	l8	3/24/09	Completed	8/24/09
Superviso	or	S. Lange Dri	iller J. Bow	erman	Depth to Wa	iter2	2.0 ft	Date/Time	8/24/09
Logged E	Зу	S. Lange			Depth to Wa	iter N	1/A	Date/Time	N/A
Litholog	gy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
405.7	0.0	Top of Hole							
-		Soil 1: MINESPOI clay with intermedi lenses, brown to g some reddish mott	SPT-1	0.0 - 1.5	1.0	4-4-4	12	-	
		and with heteroger	moist to wet, soft to very stiff and with heterogeneous mixture of coal, shale, and			1.0	3-3-3		- -
-		chert fragments	,	SPT-3	3.0 - 4.5	0.5	2-2-3	12	-
400.0	5.7			ST-1	4.5 - 6.5	1.5			_
_		Soil 2: MINESPOI clay with sand, oliv grayish brown with intermittent orange moist to wet, stiff to	re gray to e mottling,	SPT-4	6.5 - 8.0	1.0	1-2-2		_
-		and with heteroger mixture of coal, sh chert fragments	neous	SPT-5	8.0 - 9.5	0.0	1-2-2		_
394.2	11.5			ST-2	9.5 - 11.5	1.4			-
-		Soil 4: Clayey san to grayish brown, r wet and loose to m	noist to	SPT-6	11.5 - 13.0	1.0	WOT-5-7		-
_		dense		SPT-7	13.0 - 14.5	0.5	2-2-3	14	_
NAHIC LOG GDT 12/22/09				SPT-8	15.5 - 17.0	0.5	1-3-3		-
STANTECTMSN, LECACY 178569008 GPJ FMSM-GRAPHIC LOG GDT 122200				SPT-9	18.0 - 19.5	0.5	5-6-6	11	- -
STANTEC/FMSM_LEG					20.5 - 22.0	1.0	4-8-7		12/22/0




Page: 2 of 2

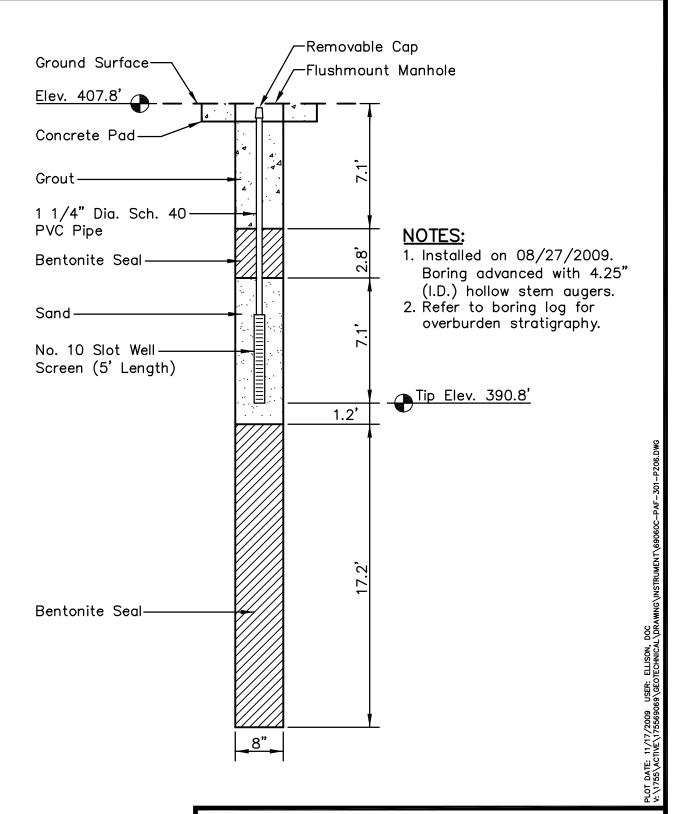
Project N	Number	175569069			Location	P	aradise Fo	ossil Plant	
Project N	Name	TVA - PAF Peabod	y Ash Pond		Boring No.		STN-22	Total Depth	n30.0 ft
Litholo	gy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
382.7 - -	23.0	Soil 6: Silty clay, g brownish gray with orange mottling, m wet, very soft to sti some silt and trace	some loist to ff, with es of	SPT-11	23.0 - 24.5	0.5	WOT-1-2	20	- - -
_		sand and occasior of coal and chert fi		SPT-12	25.5 - 27.0	1.3	2-9-30		Shale fragments – from 28.5' to 30.0'
- 375.7	30.0			SPT-13	28.6 - 30.0	1.0	3-16-19	12	-
_		No Refusal / Bottom of Hole							-
-									-
_									-
_									-
-									-
- - -									-
_				- 0 :	ting Services	L			12/22/05

Appendix C

Instrumentation Layout and Logs

Northing: 334,559.32 Easting: 1,641,085.25 Ground Elevation: 411.2 feet

Locations to be provided by TVA, Power Systems Operations, Surveying and Project Services.


Horizontal Datum: NAD 27 Vertical Datum: NGVD29

PIEZOMETER STN-1 GEOTECHNICAL EXPLORATION PEABODY ASH POND

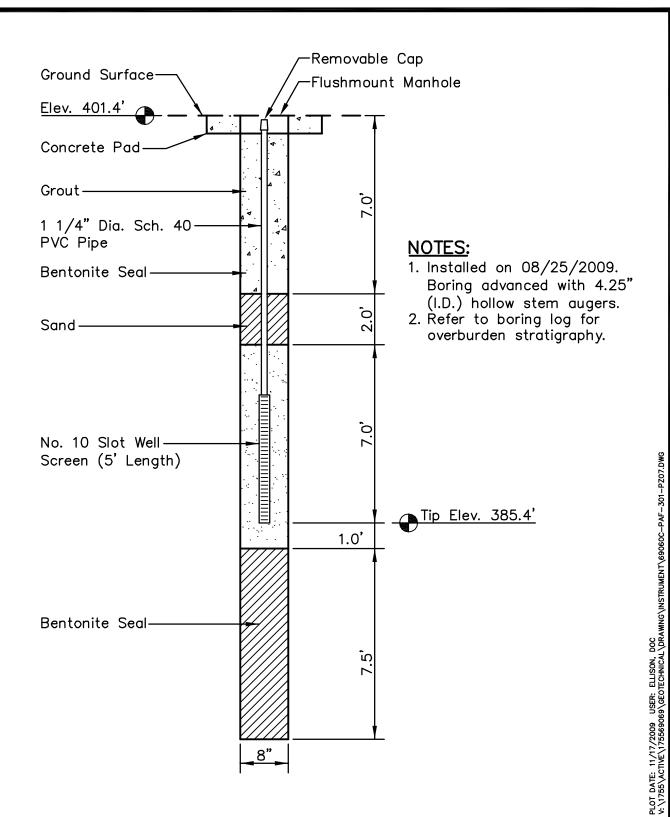
Stantec Consulting Services Inc. 1409 N. Forbes Rd. Lexington, Kentucky 40511-2050 859-422-3000

DRAWN BY	JRF	DATE	DEC.,	2009	REV	ISED	SHEET
CHECKED BY	JTB	PROJ NO	17556	89069	1.	3.	1 OF 1
CHECKED BY	SV	SCALE		NTS	2.	4.	1011

Northing: 334,117.67 Easting: 1,642,904.88 Ground Elevation: 407.8 feet

Locations to be provided by TVA, Power Systems Operations, Surveying and

Project Services.


Horizontal Datum: NAD 27 Vertical Datum: NGVD29

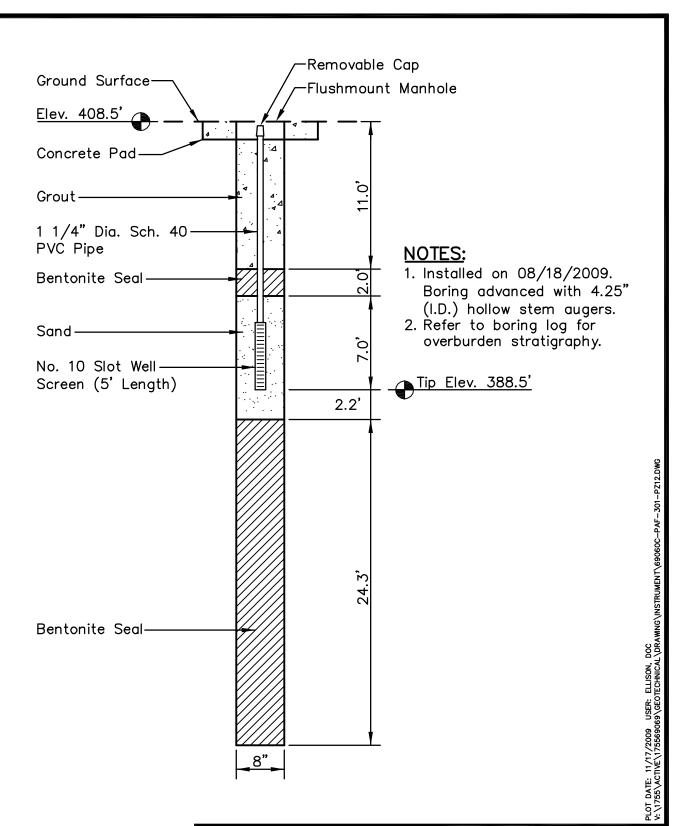
PIEZOMETER STN-6 GEOTECHNICAL EXPLORATION PEABODY ASH POND

Stantec Consulting Services Inc. 1409 N. Forbes Rd. Lexington, Kentucky 40511-2050 859-422-3000

DRAWN BY JRF	DATE DEC., 2009	REV	ISED	SHEET
снескед ву ЈТВ	PROJ. NO.175569069	1.	3.	1 OF 1
CHECKED BY SV	SCALE NTS	2.	4.	101

Northing: 334,110.95 Easting: 1,642,925.61 Ground Elevation: 401.4 feet

Locations to be provided by TVA, Power Systems Operations, Surveying and Project Services.


Horizontal Datum: NAD 27 Vertical Datum: NGVD29

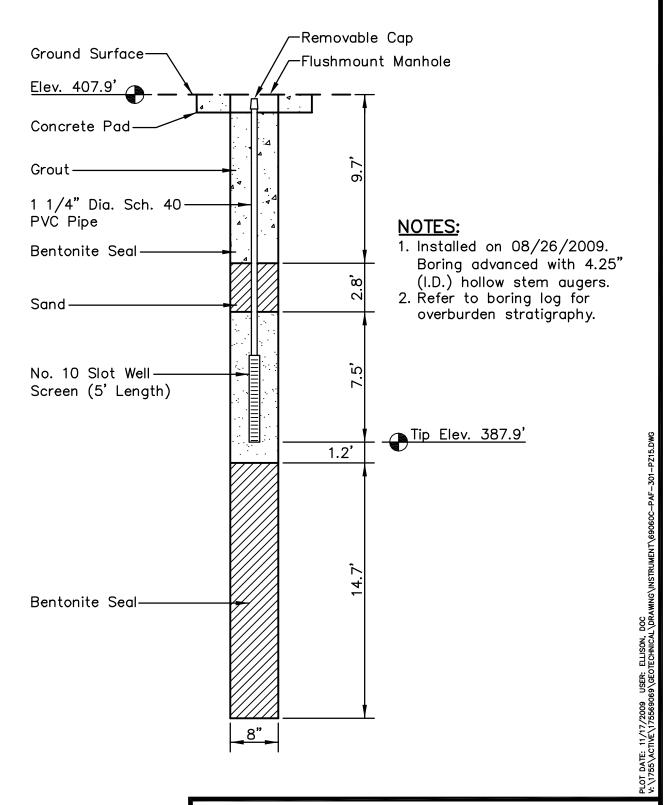
PIEZOMETER STN-7 GEOTECHNICAL EXPLORATION PEABODY ASH POND

Stantec Consulting Services Inc. 1409 N. Forbes Rd. Lexington, Kentucky 40511-2050 859-422-3000

DRAWN BY	JRF	DATE	DEC.,	2009	REV	ISED	SHEET	_
CHECKED BY	JTB	PROJ. NO.	17556	9069	1.	3.	1 OF 1	
CHECKED BY	SV	SCALE		NTS	2.	4.	1011	

Northing: 332,482.84 Easting: 1,642,158.00 Ground Elevation: 408.5 feet

Locations to be provided by TVA, Power Systems Operations, Surveying and Project Services.


Horizontal Datum: NAD 27 Vertical Datum: NGVD29

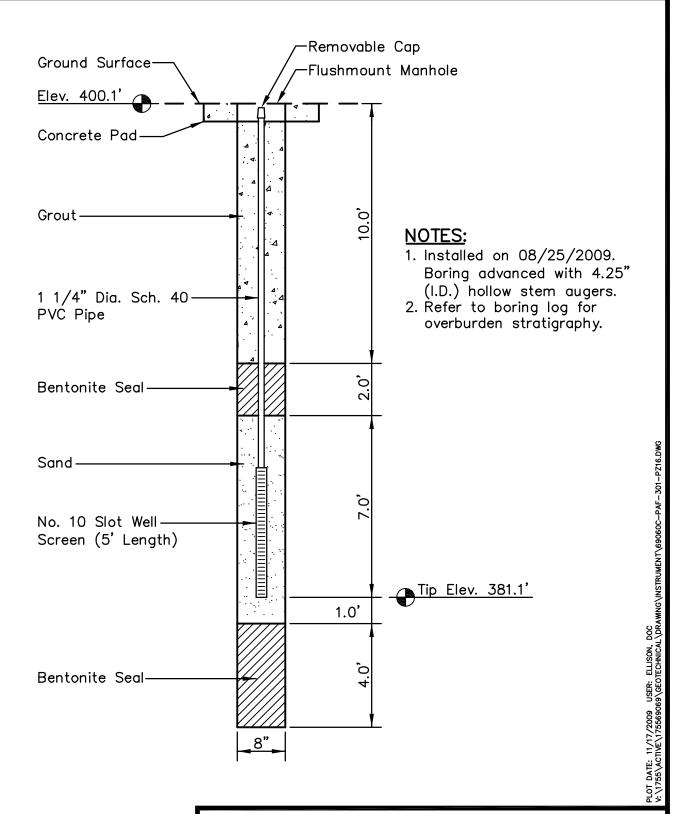
PIEZOMETER STN-12 GEOTECHNICAL EXPLORATION PEABODY ASH POND

Stantec Consulting Services Inc. 1409 N. Forbes Rd. Lexington, Kentucky 40511-2050 859-422-3000

DRAWN BY	JRF	DATE	DEC.,	2009	REV	ISED	SHEET
CHECKED BY	JTB	PROJ NO	17556	9069	1.	3.	1 OF 1
CHECKED BY	SV	SCALE		NTS	2.	4.	1011

Northing: 331,736.99 Easting: 1,641,846.45 Ground Elevation: 407.9 feet

Locations to be provided by TVA, Power Systems Operations, Surveying and Project Services.


Horizontal Datum: NAD 27 Vertical Datum: NGVD29

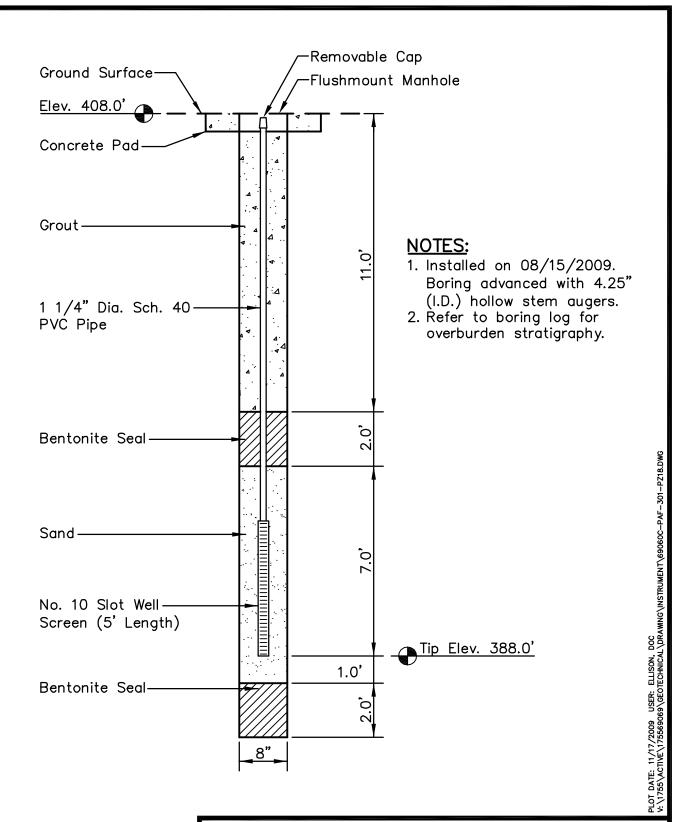
PIEZOMETER STN-15 GEOTECHNICAL EXPLORATION PEABODY ASH POND

Stantec Consulting Services Inc. 1409 N. Forbes Rd. Lexington, Kentucky 40511-2050 859-422-3000

DRAWN BY JRF	DATE DEC., 2009	REV	ISED	SHEET
нескед ву ЈТВ	PROJ. NO.175569069	1.	3.	1 OF 1
HECKED BY SV	SCALE NTS	2.	4.	1011

Northing: 331,729.49 Easting: 1,641,903.96 Ground Elevation: 400.1 feet

Locations to be provided by TVA, Power Systems Operations, Surveying and Project Services.


Horizontal Datum: NAD 27 Vertical Datum: NGVD29

PIEZOMETER STN-16 GEOTECHNICAL EXPLORATION PEABODY ASH POND

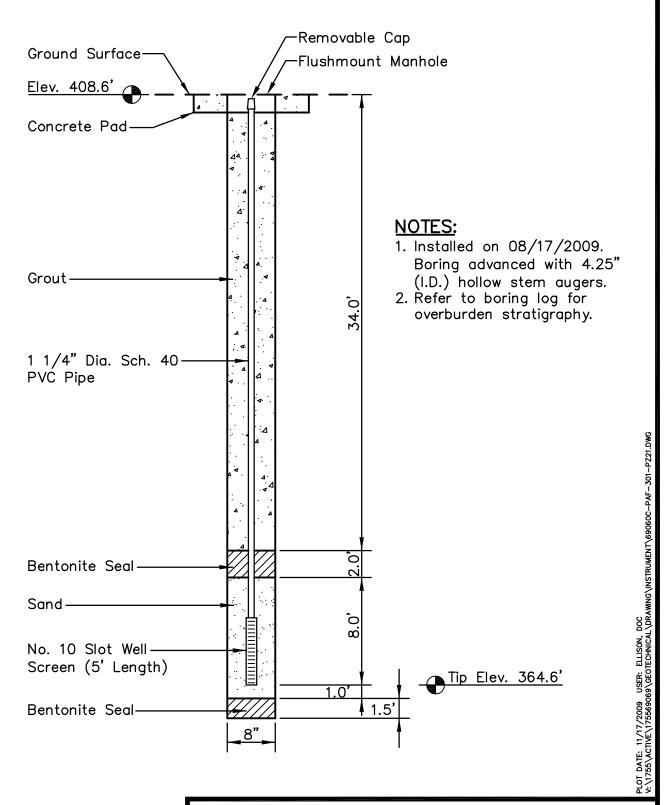
Stantec Consulting Services Inc. 1409 N. Forbes Rd. Lexington, Kentucky 40511-2050 859-422-3000

DRAWN BY	JRF	DATE	DEC.,	2009	REV	ISED	SHEET
CHECKED BY	JTB	PROJ. N	o.17556	39069	1.	3.	1 OF 1
CHECKED BY	SV	SCALE		NTS	2.	4.	1 01 1

Northing: 331,767.22 Easting: 1,641,030.49

Ground Elevation: 408.0 feet

Locations to be provided by TVA, Power Systems Operations, Surveying and Project Services.


Horizontal Datum: NAD 27 Vertical Datum: NGVD29

PIEZOMETER STN-18 GEOTECHNICAL EXPLORATION PEABODY ASH POND

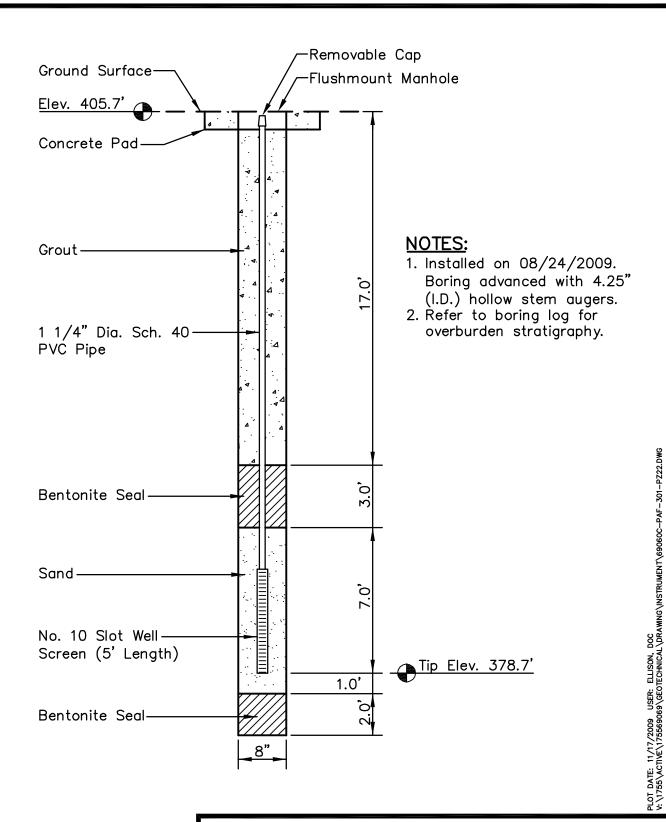
Stantec Consulting Services Inc. 1409 N. Forbes Rd. Lexington, Kentucky 40511-2050 859-422-3000

DRAWN BY	JRF	DATE DEC	., 2009	REV	ISED	SHEET
CHECKED BY	JTB	PROJ. NO. 175	569069	1.	3.	1 OF 1
CHECKED BY	SV	SCALE	NTS	2.	4.	1011

Northing: 331,553.80 Easting: 1,640,209.81

Ground Elevation: 408.6 feet

Locations to be provided by TVA, Power Systems
Operations, Surveying and Project Services.


Horizontal Datum: NAD 27 Vertical Datum: NGVD29

PIEZOMETER STN-21 GEOTECHNICAL EXPLORATION PEABODY ASH POND

Stantec Consulting Services Inc. 1409 N. Forbes Rd. Lexington, Kentucky 40511-2050 859-422-3000

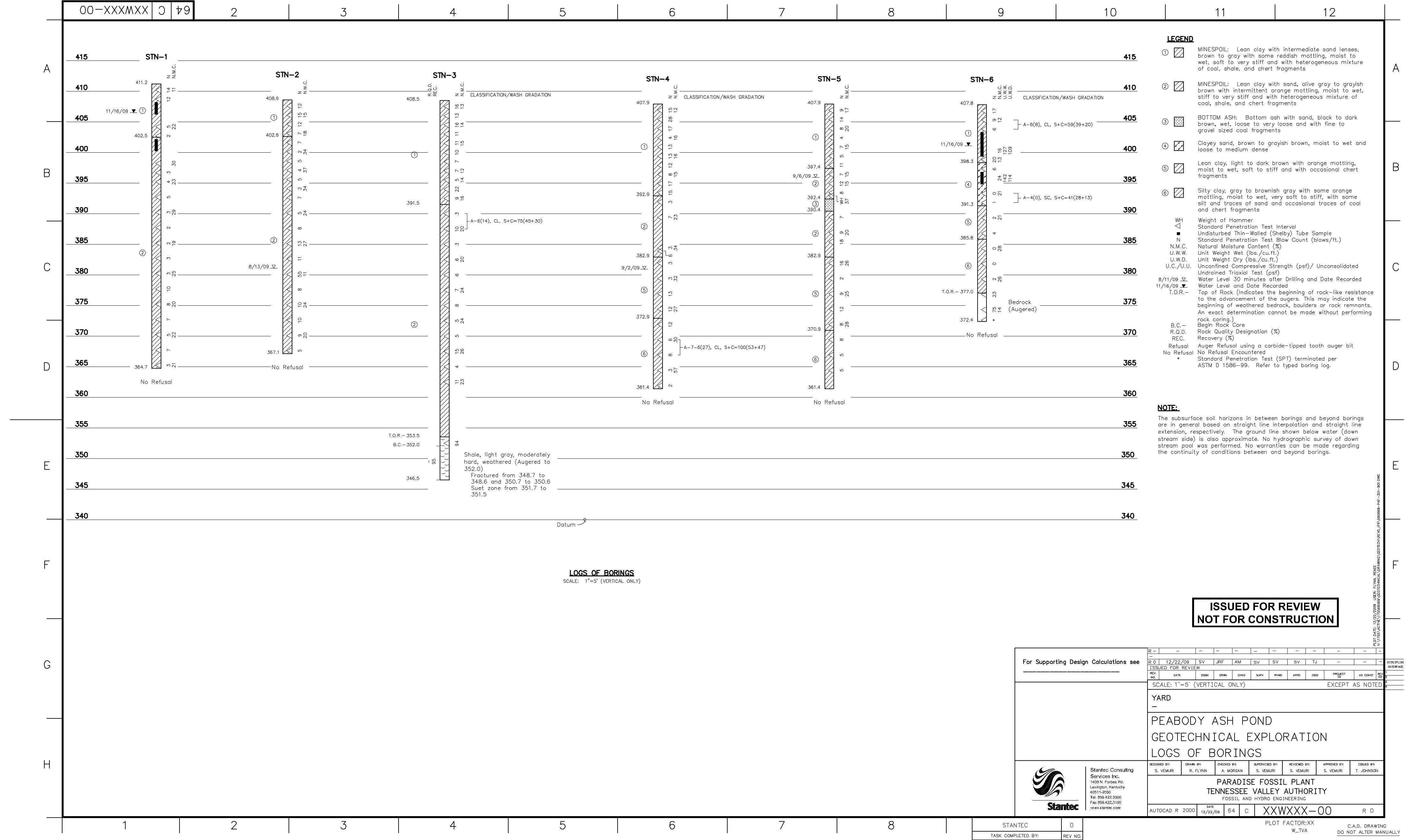
DRAWN BY J	IRF	DATE	DEC.,	2009	REV	ISED	SHEET
CHECKED BY J	JTB	PROJ. NO	17556	9069	1.	3.	1 OF 1
CHECKED BY	S۷	SCALE		NTS	2.	4.	1 01 1

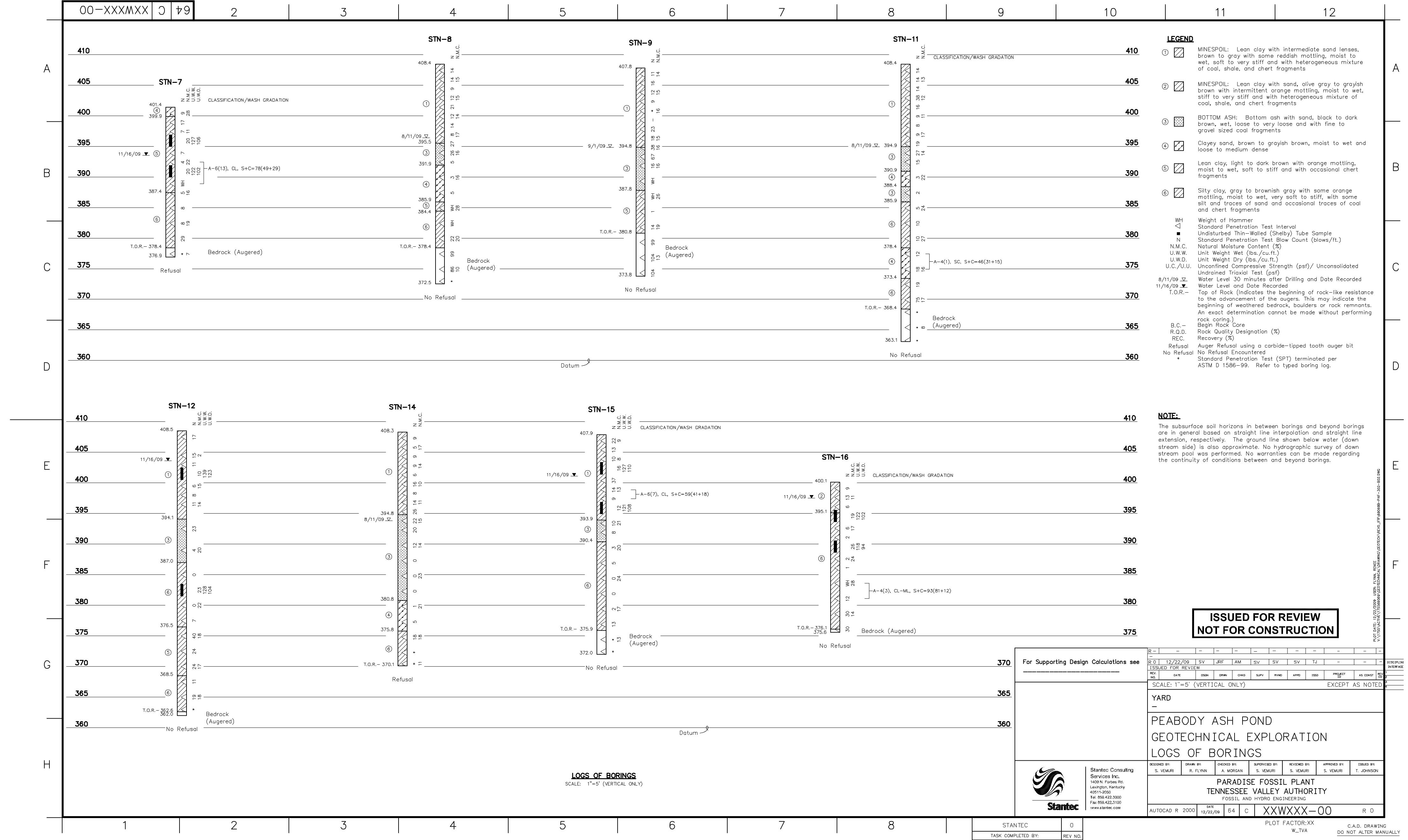
Northing: 331,536.19 Easting: 1,640,178.58 Ground Elevation: 405.7 feet

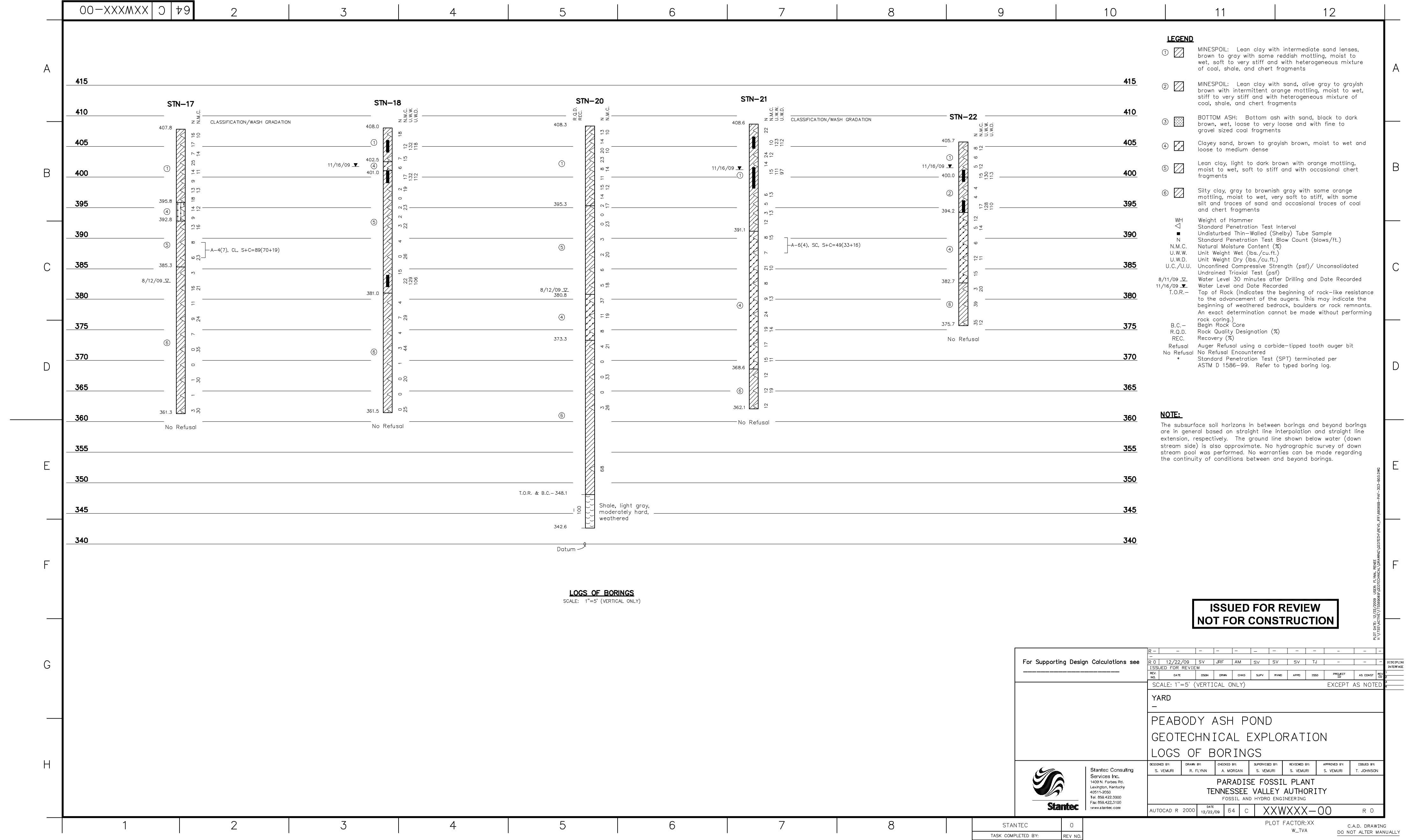
Locations to be provided by TVA, Power Systems Operations, Surveying and Project Services.

Horizontal Datum: NAD 27 Vertical Datum: NGVD29

PIEZOMETER STN-22 GEOTECHNICAL EXPLORATION PEABODY ASH POND

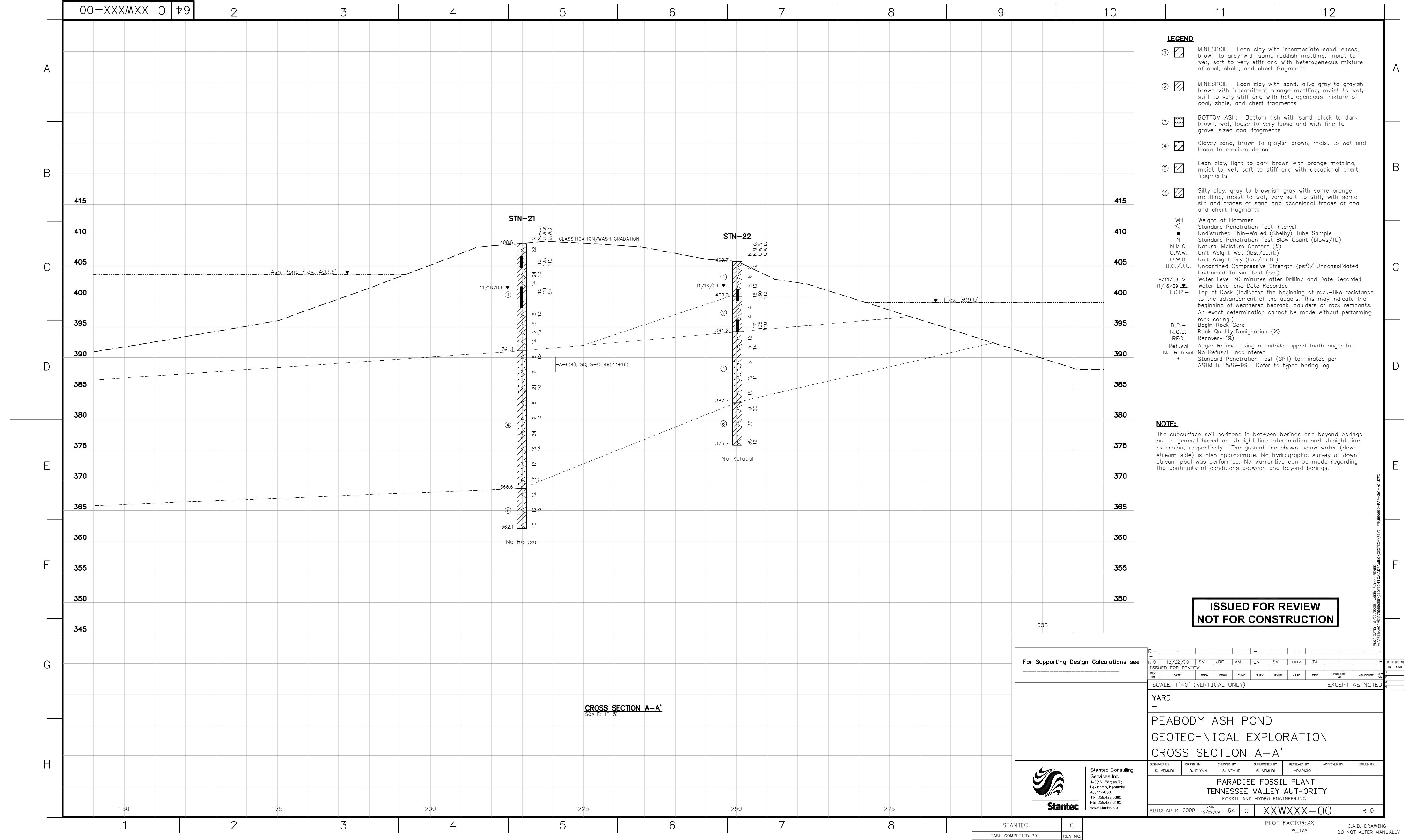



Stantec Consulting Services Inc. 1409 N. Forbes Rd. Lexington, Kentucky 40511-2050 859-422-3000


DRAWN BY	JRF	DATE	DEC.,	2009	REV	ISED	SHEET
CHECKED BY	JTB	PROJ NO	17556	9069	1.	3.	1 OF 1
CHECKED BY	SV	SCALE		NTS	2.	4.	1011

Appendix D

Graphical Logs of Borings



Appendix E

Typical Cross Section

Appendix F

Piezometer Readings

PIEZOMETER Summary Report

Paradise Fossil Plant: Peabody Pond 13246 State Route 176 175569069

			9	/21/2009			10)/20/2009	
		Surface Elevation	Stickup	Depth Measurement	Water Elevation	Surface Elevation	Stickup	Depth Measurement	Water Elevation
Location	Piezometer	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
STN-1	STN-1	411.2	-0.2			411.2	-0.2	4.3	406.7
STN-6	STN-6	407.8	-0.2	6.4	401.3	407.8	-0.2	6.5	401.1
STN-7	STN-7	401.4	-0.2	7.7	393.5	401.4	-0.2	11.4	389.8
STN-12	STN-12	408.5	-0.2			408.5	-0.2	4.7	403.6
STN-15	STN-15	407.9	-0.2	6.3	401.4	407.9	-0.2	6.5	401.2
STN-16	STN-16	400.1	-0.2	2.5	397.4	400.1	-0.2	2.0	397.9
STN-18	STN-18	408.0	-0.2	-		408.0	-0.2	6.4	401.5
STN-21	STN-21	408.6	-0.2	6.1	402.3	408.6	-0.2	6.8	401.6
STN-22	STN-22	405.7	-0.3	4.8	400.7	405.7	-0.3	3.8	401.6

PIEZOMETER Summary Report

Paradise Fossil Plant: Peabody Pond 13246 State Route 176 175569069

			1′	1/16/2009			12/	13/2009	
		Surface		Depth	Water	Surface		Depth	Water
		Elevation	Stickup	Measurement(f	Elevation	Elevation	Stickup	Measurement	Elevation
Location	Piezometer	(ft)	(ft)	t)	(ft)	(ft)	(ft)	(ft)	(ft)
STN-1	STN-1	411.1	-0.2	4.4	406.5	411.1	-0.2	5.0	405.9
STN-6	STN-6	407.8	-0.2	6.6	401.1	407.8	-0.2	6.7	400.9
STN-7	STN-7	401.4	-0.2	7.7	393.5	401.4	-0.2	7.3	393.9
STN-12	STN-12	408.5	-0.2	4.7	403.6	408.5	-0.2	4.7	403.6
STN-15	STN-15	407.9	-0.2	6.6	401.1	407.9	-0.2	6.5	401.2
STN-16	STN-16	400.1	-0.2	2.3	397.5	400.1	-0.2	1.9	398.0
STN-18	STN-18	408.0	-0.2	6.2	401.7	408.0	-0.2	6.5	401.4
STN-21	STN-21	408.6	-0.2	7.1	401.2	408.6	-0.2	6.9	401.5
STN-22	STN-22	405.7	-0.3	4.0	401.5	405.7	-0.3	3.9	401.5

PIEZOMETER Summary Report

Paradise Fossil Plant: Peabody Pond 13246 State Route 176 175569069

			1/1	8/2010	
Location	Piezometer	Surface Elevation (ft)	Stickup (ft)	Depth Measurement (ft)	Water Elevation (ft)
STN-1	STN-1	411.1	-0.2	5.4	405.5
STN-6	STN-6	407.8	-0.2	6.8	400.8
STN-7	STN-7	401.4	-0.2	8.8	392.4
STN-12	STN-12	408.5	-0.2	4.6	403.7
STN-15	STN-15	407.9	-0.2	6.4	401.3
STN-16	STN-16	400.1	-0.2	2.2	397.6
STN-18	STN-18	408.0	-0.2	6.6	401.3
STN-21	STN-21	408.6	-0.2	6.9	401.5
STN-22	STN-22	405.7	-0.2	4.0	401.6

Appendix G

Results of Laboratory Testing

Project Name TVA- PAF Peabody Ash Pond

Moisture Content of Soil

ASTM D 2216

Project Number 175569069 Tested By JF

											ested by	F2
Maximum Particle Size in Sample	No. 10	No. 4	3/8"	3/4"	1 1/2"	3,						
Recommended Minimum Mass (g)	50	100	500	2,500	10,000	50,000				_	Test Method ASTM	ASTM
Material Type: <u>Stratified, Laminated, Len</u> sed, <u>Hom</u> ogeneous	<u>nogeneous</u>						12					
					Maximum	Material	ial	Pass Min.		Wet Soil &	Dry Soil &	
			Date	Material	Particle	Excluded	p _e	Mass?	Can Weight	Can Weight	CanWeight	Moisture
Source		Lab ID	Tested	Type	Size	Amount	Size	(X/N)	(6)	(B)	(B)	Content (%)
STN-1, 0.0'-1.5'		1	10/29/09	Hom	3/8"			No No	44.98	137.06	128.02	10.9
STN-1, 6.0'-7.5'		3	10/29/09	Hom	3/8"			No	44.71	184.10	159.42	21.5
STN-1, 12.0'-13.5'		5	10/53/09	Hom	No. 4			No	44.31	161.27	134.34	29.9
STN-1, 15.0'-16.5'		2	10/29/09	Hom	1 1/2"	·		No	49.14	104.31	93.86	23.4
STN-1, 20.0'-21.5'		6	10/29/09	Hom	3/8"			No	42.15	114.15	98.11	28.7
STN-1, 25.0'-26.5'		11	10/29/09	Hom	1 1/2"			No	51.25	143.32	128.58	19.1
STN-1, 30.0'-31.5'		13	10/53/09	Hom	No. 10			Yes	44.46	156.92	134.81	24.5
STN-1, 35.0'-36.5'		15	10/29/09	Hom	No. 10			Yes	51.67	176.76	155.73	20.2
STN-1, 40.0'-41.5'		17	10/29/09	Hom	1 1/2"			No	31.07	116.03	100.59	22.2
STN-1, 45.0'-46.5'		19	10/23/09	Hom	3/8"			No	39.60	143.83	125.48	21.4
STN-2, 1.5'-3.0'		21	10/22/09		3/4"			No	20.88	47.05	43.59	15.2
STN-2, 4.5'-6.0'		23	10/22/09	шоH	1 1/2"			No	23.41	80.59	71.71	18.4
STN-2, 7.5'-9.0'		25	10/27/09	Hom	No. 10			Yes	22.40	77.86	63.79	34.0
STN-2, 13.5'-15.0'		27	10/27/09	шон	No. 4			No	21.52	71.19	58.59	34.0
STN-2, 17.5'-19.0'		29	10/27/09	Hom	No. 10			Yes	21.72	71.94	62.18	24.1
STN-2, 22.5'-24.0'		31	10/27/09	Hom	No. 4			No	21.58	65.54	56.13	27.2
STN-2, 27.5'-29.0'		33	10/27/09		1 1/2"			No	21.84	30.88	29.97	11.2
STN-2, 32.5'-34.0'		35	10/27/09	Hom	No. 4			%	21.70	96.22	81.88	23.8
STN-2, 37.5'-39.0'		37	10/27/09	Hom	No. 4			No	21.39	86.66	75.77	20.0
STN-3, 0.0'-1.5'	:	39	10/27/09	Hom	1 1/2"			No	45.49	138.24	127.28	13.4
STN-3, 3.0'-4.5'		41	10/27/09	Hom	3/4"			No	46.23	187.33	169.57	14.4
STN-3, 6.0'-7.5'		43	10/27/09	Len	1 1/2"			No	77.69	270.13	245.17	14.9
STN-3, 12.0'-13.5'	:	45	10/27/09	Hom	1 1/2"			No	48.89	210.57	190.80	13.9
STN-3, 15.0'-16.5'		47	10/27/09	Hom	1 1/2"			No	73.92	173.00	159.71	15.5
STN-3, 20.0'-21.5'		49	10/27/09	Hom	3/4"			S _N	77.90	232.32	206.31	20.3
STN-3, 25.0'-26.5'		51	10/27/09	Hom	3/8,,			S N	20.48	62.14	55.23	19.9
STN-3, 30.0'-31.5'		53	10/27/09	Hom	No. 4			Yes	73.10	258.85	223.49	23.5
STN-3, 35.0'-36.5'	,	55	10/27/09	Hom	3/8"			N N	72.47	267.44	230.20	23.6

Laboratory Document Prepared by : JW Approved by : TLK

Stantec

Project Name TVA- PAF Peabody Ash Pond

Moisture Content of Soil

ASTM D 2216
Project Number 175569069
Tested By JF

											, (2, 20, 2)	
Maximum Particle Size in Sample	No. 10	No. 4	3/8"	3/4"	1 1/2"	3"						
Recommended Minimum Mass (g)	20	100	500	2,500	10,000	50,000				F	Test Method ASTM	ASTM
Material Type: Stratified, Laminated, Lensed, Homogeneous	snoeuegoī											
39					Maximum	Material		Pass Min.		Wet Soil &	Dry Soil &	
			Date	Material	Particle	Excluded	per	Mass?	Can Weight	Can Weight	CanWeight	Moisture
Source		Lab ID	Tested	Type	Size	Amount	Size	(Y/N)	(g)	(a)	(6)	Content (%)
STN-3, 40.0'-41.5'		22	10/22/09	Hom	1 1/2"			No	76.49	209.73	182.08	26.2
STN-3, 45.0'-46.5'		59	10/27/09	Hom	3/4"			No	21.23	89.29	76.47	23.2
STN-4, 1.5'-3.0'		62	10/26/09	Len	1 1/2"			N _o	75.86	191.03	178.40	12.3
STN-4, 4.5'-6.0'		64	10/26/09	Hom	3/8"			No	47.73	159.99	144.20	16.4
STN-4, 7.5'-9.0'		99	10/26/09	Hom	1 1/2"			No	43.80	162.51	146.15	16.0
STN-4, 13.5'-15.0' No sample		89	10/26/09									
STN-4, 17.5'-19.0'		20	10/26/09	Hom	3/4"			No	49.21	143.46	125.82	23.0
STN-4, 22.5'-24.0'		72	10/26/09	Hom	No. 4			Yes	71.78	230.68	190.23	34.1
STN-4, 27.5'-29.0'		74	10/26/09		No. 10			Yes	69.30	257.78	212.30	31.8
STN-4, 32.5'-34.0'		9/	10/26/09	Hom	3/8"			No	53.19	187.84	159.47	26.7
STN-4, 37.5'-39.0'		78	10/26/09	moH.	No. 10			Yes	73.22	233.62	196.64	30.0
STN-4, 42.5'-44.0'		80	10/26/09	Hom	No. 10			Yes	70.66	222.76	167.80	56.6
STN-5, 0.0'-1.5'		82	10/26/09	Hom	3/8"			No	21.73	65.82	59.53	16.6
STN-5, 3.0'-4.5'		84	10/26/09	Hom	3/8"			No	18.80	68.84	60.53	19.9
STN-5, 6.0'-7.5'		98	10/26/09	Hom	1 1/2"			No	20.97	60.74	55.53	15.1
STN-5, 12.0'-13.5'		88	10/27/09	Hom	1 1/2"			No	47.99	180.56	163.67	14.6
STN-5, 15.0'-16.5'		06	10/27/09	Hom	3/8"			No	46.42	153.88	125.07	36.6
STN-5, 20.0'-21.5'		92	10/27/09		3/4"			No	48.94	154.41	137.22	19.5
STN-5, 25.0'-26.5'		94	10/27/09	Hom	No. 4			No	44.12	137.09	117.69	26.4
STN-5, 30.0'-31.5'		96	10/27/09	Hom	No. 4			No	47.21	137.63	119.81	24.5
STN-5, 35.0'-36.5'		86	10/27/09	Hom	No. 10			Yes	45.60	144.46	122.94	27.8
STN-5, 40.0'-41.5' No Sample		100	11/2/09									
STN-6, 1.5'-3.0'		103	10/29/09	Hom	3/4"			8 N	41.44	160.41	147.33	12.4
STN-6, 8.0'-9.5'		105	10/29/09	Hom	3/8"			S N	49.09	116.97	109.29	12.8
STN-6, 13.5'-15.0'		107	10/29/09		3/4"			No	22.99	82.69	72.36	20.9
STN-6, 17.5'-19.0'		109	10/29/09	Hom	No. 4			N _o	19.65	62.33	55.06	20.5
STN-6, 22.5'-24.0'		111	10/29/09	Hom	No. 10			Yes	19.75	67.83	57.42	27.6
STN-6, 27.5'-29.0'		113	10/29/09	Hom	3/4"			_N	21.16	79.65	67.51	26.2
STN-6, 32.5'-34.0'		115	10/29/09	Hom	No. 10			Yes	20.21	69.16	63.04	14.3
STN-7, 0.0'-1.5'		117	10/29/09	Hom	3/4"			No	19.92	67.03	56.84	27.6
STN-7, 3.0'-4.5'		119	10/29/09	Hom	No. 4		- 1	No	20.25	74.12	68.61	11.4

File: fm_mc_20091015 Sheet:Input Preparation Date: 2-2008 Revision Date: 4-2008

Stantec Consulting Services Inc.

Laboratory Document Prepared by : JW Approved by : TLK

Project Name TVA- PAF Peabody Ash Pond

Moisture Content of Soil

ASTM D 2216

Project Number 175569069 Tested By JF

											ested by	-LO
Maximum Particle Size in Sample	No. 10	No. 4	3/8"	3/4"	1 1/2"	3"						
Recommended Minimum Mass (g)	50	100	200	2,500	10,000	50,000				-	Test Method ASTM	ASTM
Material Type: Stratified, Laminated, Lensed, Homogeneous	snoauagoī											
					Maximum	Material	rial	Pass Min.		Wet Soil &	Dry Soil &	
			Date	Material	Particle	Excluded	ded	Mass?	Can Weight	Can Weight	CanWeight	Moisture
Source		Lab ID	Tested	Type	Size	Amount	Size	(X/N)	(B)	(B)	(6)	Content (%)
STN-7, 8.0'-9.5'		121	10/29/09	Hom	3/4"			No	21.73	74.27	64.84	21.9
STN-7, 13.0'-14.5'		123	10/29/09	Hom	No. 4			No	20.62	72.34	65.17	16.1
STN-7, 18.0'-19.5'		125	10/29/09	Hom	No. 4			No	22.85	78.29	69.62	18.5
STN-7, 23.0'-24.5'		127	10/29/09	Hom	No. 10			Yes	22.27	78.35	74.57	7.2
STN-8, 1.5'-3.0'		129	10/27/09	Hom	No. 4			No	22.90	80.72	73.20	15.0
STN-8, 4.5'-6.0'		131	10/27/09	Hom	1 1/2"	-		No	21.04	65.22	29.60	14.6
STN-8, 7.5'-9.0'		133	10/22/09	Hom	3/4"			No	18.98	63.03	57.75	13.6
STN-8, 13.5'-15.0'		135	10/22/09		3/4"			No	21.73	72.73	69:69	16.0
STN-8, 17.5'-19.0'		137	10/27/09	Hom	No. 4			No	21.53	87.59	78.29	16.4
STN-8, 22.5'-24.0'		139	10/27/09	Hom	No. 10			Yes	21.49	93.30	77.52	28.2
STN-8, 27.5'-29.0'		141	10/27/09	Len	No. 4			No	21.69	81.10	71.14	20.1
STN-8, 32.5'-34.0'		143	10/22/09	Hom	No. 4			No	21.53	92.65	86.01	10.3
STN-9, 0.0'-1.5'		145	10/27/09		1 1/2"			No	18.76	61.21	55.95	14.1
STN-9, 3.0'-4.5'		147	10/22/09	Hom	3/4"			No	21.78		75.41	15.2
STN-9, 6.0'-7.5'		149	10/22/09	Hom	3/4"			No	22.57			15.6
STN-9, 12.0'-13.5'		151	10/27/09		3/8			No	21.85			15.6
STN-9, 15.0'-16.5'		153	10/22/09		1 1/2"			No	21.27		,	16.1
STN-9, 20.0'-21.5'		155	10/27/09	Hom	3/8"			No	22.91			25.9
STN-9, 25.0'-26.5'		157	10/27/09	Hom	3/4"			No	21.82			19.3
STN-9, 30.0'-31.5'		159	10/27/09	Hom	3/8"			No	21.79			12.5
STN-11, 1.5'-3.0'		162	10/27/09	Hom	3/4"			No	23.22		73.89	13.3
STN-11, 4.5'-6.0'		164	10/27/09	Hom	3/4"			No	20.81			12.4
STN-11, 7.5'-9.0'		166	10/27/09		3/4"			S	22.95		45.43	10.5
STN-11, 13.5'-13.9'		168A	10/27/09		3/4"			No	21.62	83.65	74.79	16.7
STN-11, 13.9'-15.0'		168B	10/27/09		3/4"			No	21.46	:		13.9
STN-11, 17.5'-19.0'		170	10/27/09		3/8"			No	21.68			22.3
STN-11, 22.5'-24.0'		172	10/27/09		3/4"			No	21.93		70.94	23.6
STN-11, 27.5'-29.0'		174	10/27/09	Hom	No. 10			Yes	21.44	75.13		26.7
STN-11, 32.5'-34.0'		176	10/27/09		No. 4			No	20.62			15.7
STN-11, 37.5'-39.0'		178	10/27/09	Hom	No. 4	, <u>-</u>		No	22.56			17.2
STN-11, 42.5'-44.0'		180	10/27/09	Hom	No. 10			Yes	21.99	69.65	66.23	7.7
File: frm mc 20094045 Sheet:local												Laboratory Docume

Stantec

Project Name TVA- PAF Peabody Ash Pond

Moisture Content of Soil

ASTM D 2216

Project Number 175569069 Tested By JF

Maximum Particle Size in Sample No. 10 No. 4 3/8" Recommended Minimum Mass (g) 20 100 500 Material Type: Stratified, Laminated, Lensed, Homogeneous Date Source Lab iD Tested STN-12, 0.0*-1.5* No Sample 182 11/1/09 STN-12, 3.0*-4.5* 184 10/29/09 STN-12, 8.0*-9.5* 186 10/29/09 STN-12, 11.0*-12.5* 198 10/29/09	3/4"	11/2" 10,000 Maximum	50,000			_	Test Method ASTM	ASTM
e Lab ID Sample 186 186 186		→	50,000				est Method	ASTM
e. Stratified, Laminated, Lensed, Homogeneous Source 182 3.0'-1.5' No Sample 1.84 8.0'-9.5' 184 11.0'-12.5' 186 11.0'-12.5' 190		Maximum	Mactorial					
Source Lab ID 0.0'-1.5' No Sample 182 3.0'-4.5' 184 186 11.0'-12.5' 186 148 5:20 0'		Maximum	le in de Andreigal					
Source Lab ID 3.0'-1.5' No Sample 182 3.0'-4.5' 184 186 11.0'-12.5' 188 186 186 196 196 196 196 196 196 196 196 196 19			Material	Pass Min.		Wet Soil &	Dry Soil &	74
Source Lab ID 1.02-1.5' No Sample 182 3.0'-4.5' No Sample 184 184 1.0'-12.5' 186 148 148 148 148 148 149 149 149 149 149 149 149 149 149 149	_	<u> </u>	펓	Mass?	Can Weight	Can Weight	CanWeight	Moisture
3.0'-1.5' No Sample 182 3.0'-4.5' 184 8.0'-9.5' 186 11.0'-12.5' 188	ted Type	Size	Amount Size	(X/N)	(B)	(6)	(6)	Content (%)
3.0'-4.5'1848.0'-9.5'18611.0'-12.5'18818 5'-20.0'100	60/							
186	60/6	1 1/2"		No	46.98	112.68	111.53	1.8
188	moH 60/€	1 1/2"		No	40.69	173.52	156.21	15.0
190	Hom 60/6	3/4"		S	43.84	186.09	168.68	13.9
	60/6	3/4"		S	44.08	84.85	77.96	20.3
STN-12, 27.5'-29.0' 192 10/29/09	MoH 60/6	No. 10		Yes	44.93	163.57	142.38	21.7
STN-12, 32.5'-34.0' 19/29/09	MoH 60/6	No. 4		Yes	43.74	198.60	175.36	17.7
STN-12, 37.5'-39.0' 196 10/29/09	60/e	1 1/2"		No	43.80	169.34	151.59	16.5
STN-12, 42.5'-44.0' 198 10/29/09	moH 60/6	1 1/2"		N _o	44.21		153.22	17.9
201	8/09 Hom	3/4"		No	73.75	203.98	184.66	17.4
STN-14, 4.5'-6.0' 203 10/28/09	8/09 Hom	3/4"		No	75.71	263.14	240.00	14.1
205 10	8/09 Hom	1 1/2"		No	74.34		243.83	10.2
STN-14, 10.5'-12.0' 207 10/28)/28/09 Lam	1 1/2"		No	71.71			10.7
STN-14, 13.5'-15.0' 209 10/28	0/28/09	3/4"		No	71.16		185.32	15.2
STN-14, 17.5'-19.0' 211 10/28/09	60/8	No. 4		Yes	74.15	209.38	192.52	14.2
STN-14, 22.5'-24.0' 213 10/28/09	60/8	3/8"		No	73.27			23.1
	60/8	3/8"		No	70.60			20.6
STN-14, 32.5'-34.0' 10/28/09	8/09 Len	No. 4		Yes	72.74		187.50	17.9
STN-14, 37.5'-39.0' 219 10/28/09	8/09 Lam	No. 4		Yes	76.90	2	7	10.9
	Hom 60/6			No	23.33			
\neg	9/09 Hom	-		2	22.03			
STN-15, 8.0'-9.5' 224 10/29/09	9/09 Hom	_		₈	22.44		66.72	
Н	60/6	3/4"		No	24.79		74.87	20.8
\dashv	9/09 Hom			S N	22.71			19.5
STN-15, 22.5'-24.0' 10/29/09	moH 60/6	No. 10		Yes	21.54	82.00	70.44	23.6
STN-15, 27.5'-29.0' 232 10/29/09	9/09 Hom	.8/8		No	21.86		82.51	17.2
STN-15, 32.5'-34.0' 234 10/29/09	9/09 Hom	No. 4		No	23.14	89.29	81.77	12.8
STN-16, 1.5'-3.0' 237 10/29/09	9/09 Len	No. 4		Yes	75.51	187.39	176.67	10.6
STN-16, 6.5'-8.0' 239 10/29/09	moH 60/6	No. 10		Yes	70.59	235.76	212.41	16.5
STN-16, 11.5'-13.0' 241 10/29/09	9/09 Hom	1 No. 10		Yes	71.48	157.97		24.2
STN-16, 15.5'-17.0' 243 10/29/09	9/09 Hom	No. 10		Yes	75.12	190.92	165.49	28.1

Project Name TVA- PAF Peabody Ash Pond

Moisture Content of Soil

ASTM D 2216

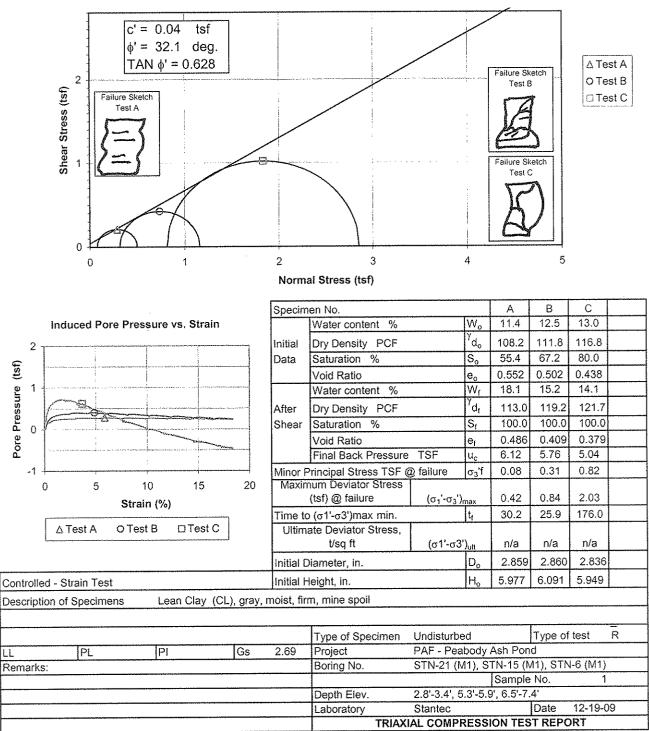
Project Number 175569069 Tested By JF

Month Month Month Month Material Pass Min. Material Material												rested by or	
20	Maximum Particle Size in Sample	No. 10	No. 4	3/8"	3/4"	1 1/2"	3,						
Date Material Lab ID Maskimum Material Excluded Mass? Pass Min. Well Mass? Can Weight Can Weight Can Weight Can Weight Can Weight Can Mass? Can Weight Can Weight Can Weight Can Weight Can Mo. 245 To/28/09 Hom No. 4 Particle Amount Size (Y/N) (g) Mo. 47.11 A.7.11 245 10/28/09 Hom No. 4 3/4" No 44.63 A4.63 A50.46 A7.11 A4.63 A6.82 A6.83	Recommended Minimum Mass (g)	20	100	500	2,500	10,000	50,000				_	Test Method ASTM	ASTM
Source Lab ID Date ID Material Particle Protocole Rescluded Mass? (Ann. Weight Can Weight Can Weight Can Weight Can Weight Can Weight Can More Annual Size (Vol. More Annual Size (Vol. More Annual Can More Annual	Material Type: Stratified, Laminated, Lensed, Hom	snoeueso										•	
Source Date Lab ID 1 Tested Types Material Particle Fixed Amount ID Tested Types Size ID Tested Size						Maximum	Material	Pass	Min.		Wet Soil &	Dry Soil &	
Source Lab ID Tested Type Size Amount Size (V/N) (g) 245 10/29/09 Hom 34" No 45.46 249 10/28/09 Hom 34" No 44.63 251 10/28/09 Hom 34" No 44.63 252 10/28/09 Hom 34" No 46.82 255 10/28/09 Hom No. 4 Yes 44.53 255 10/28/09 Hom No. 10 Yes 44.54 255 10/28/09 Hom No. 10 Yes 44.54 256 10/28/09 Hom No. 10 Yes 44.54 265 10/28/09 Hom No. 10 Yes 44.54 267 10/28/09 Hom No. 10 Yes 44.56 277 10/28/09 Hom No. 10 Yes 44.56 278 10/28/09 Hom No. 10 Yes <				Date	Material	Particle	Excluded			an Weight	Can Weight	CanWeight	Moisture
245 10/28/09 Hom No. 4 Yes 69.84 247 10/28/09 Len 34" No 47.11 249 10/28/09 Hom 34" No 46.63 251 10/28/09 Hom 34" No 46.63 252 10/28/09 Hom No. 10 Yes 41.53 255 10/28/09 Hom No. 10 Yes 41.53 255 10/28/09 Hom No. 10 Yes 41.53 255 10/28/09 Hom No. 10 Yes 41.53 256 10/28/09 Hom No. 10 Yes 43.56 265 10/28/09 Hom No. 10 Yes 43.59 275 10/28/09 Hom No. 10 Yes 44.65 277 10/28/09 Hom No. 10 Yes 44.65 277 10/28/09 Hom No. 10 Yes 44.65 280	Source	_	ab ID	Tested	Type	Size		_	2	(g)	(g)	(6)	Content (%)
247 10/28/09 Len 34" No 47.11 249 10/28/09 Hom 3/4" No 44.63 251 10/28/09 Hom 3/4" No 46.62 255 10/28/09 Hom No.4 Yes 41.53 255 10/28/09 Hom No. 10 Yes 47.54 250 10/28/09 Hom No. 10 Yes 47.54 261 10/28/09 Hom No. 10 Yes 47.54 262 10/28/09 Hom No. 10 Yes 47.54 263 10/28/09 Hom No. 10 Yes 47.56 263 10/28/09 Hom No. 10 Yes 47.56 271 10/28/09 Hom No. 10 Yes 44.62 272 10/28/09 Hom No. 10 Yes 47.56 273 10/28/09 Hom No. 10 Yes 47.56 284 <td< td=""><td></td><td></td><td>245</td><td>10/29/09</td><td>Hom</td><td>No. 4</td><td></td><td>Ye</td><td>Se</td><td>69.84</td><td>208.84</td><td>191.72</td><td>14.0</td></td<>			245	10/29/09	Hom	No. 4		Ye	Se	69.84	208.84	191.72	14.0
249 10/28/09 Hom 3/4" No 50.46 251 10/28/09 Hom 3/4" No 44.63 252 10/28/09 Hom No.10 Yes 41.63 256 10/28/09 Hom No.10 Yes 44.54 257 10/28/09 Hom No.10 Yes 44.54 257 10/28/09 Hom No.10 Yes 47.75 258 10/28/09 Hom No.10 Yes 47.56 267 10/28/09 Hom No.10 Yes 44.58 267 10/28/09 Hom No.10 Yes 44.58 271 10/28/09 Hom No.10 Yes 44.58 272 10/28/09 Hom No.10 Yes 44.56 273 10/28/09 Hom No.10 Yes 44.65 274 10/28/09 Hom No.10 Yes 44.05 275 10/2	STN-17, 0.0'-1.5'		247	10/28/09	ren	3/4"		Z	0	47.11	193.00	179.36	10.3
251 10/28/09 Hom 3/4" No 44.63 253 10/28/09 Hom 3/6" No 46.82 255 10/28/09 Hom No. 10 Yes 41.53 257 10/28/09 Hom No. 10 Yes 47.75 269 10/28/09 Hom No. 10 Yes 47.75 265 10/28/09 Hom No. 10 Yes 47.75 265 10/28/09 Hom No. 10 Yes 47.76 265 10/28/09 Hom No. 10 Yes 47.86 271 10/28/09 Hom No. 10 Yes 47.56 272 10/28/09 Hom No. 10 Yes 47.56 273 10/28/09 Hom No. 10 Yes 47.56 274 10/28/09 Hom No. 10 Yes 47.06 275 10/28/09 Hom No. 10 Yes 47.06 284	STN-17, 3.0'-4.5'		249	10/28/09	Hom	3/4"		N	0	50.46	144.51		14.3
253 10/28/09 Hom 3/6" No 46.82 255 10/28/09 Hom No. 10 Yes 41.53 255 10/28/09 Hom No. 10 Yes 50.04 256 10/28/09 Hom No. 10 Yes 47.54 261 10/28/09 Hom No. 10 Yes 47.75 265 10/28/09 Hom No. 10 Yes 47.70 265 10/28/09 Hom No. 10 Yes 47.56 267 10/28/09 Hom No. 10 Yes 43.56 271 10/28/09 Hom No. 10 Yes 43.56 272 10/28/09 Hom No. 10 Yes 43.56 273 10/28/09 Len No. 10 Yes 44.56 No 274 10/28/09 Hom No. 10 Yes 47.56 275 10/28/09 Hom No. 10 Yes 47.05	STN-17, 6.0'-7.5'		251	10/28/09	Hom	3/4"		Z	. 0	44.63	185.36	171.72	10.7
255 10/28/09 No. 4 Yes 41.53 257 10/28/09 Hom No. 10 Yes 50.04 259 10/28/09 Hom No. 10 Yes 44.54 263 10/28/09 Hom No. 10 Yes 47.75 265 10/28/09 Hom No. 10 Yes 47.70 265 10/28/09 Hom No. 10 Yes 47.56 267 10/28/09 Hom No. 10 Yes 47.56 271 10/28/09 Hom No. 10 Yes 47.56 272 10/28/09 Hom No. 10 Yes 50.86 273 10/28/09 Hom No. 10 Yes 44.62 A No sample 281 10/28/09 Hom No. 10 Yes 47.66 A No sample 281 10/28/09 Hom No. 10 Yes 22.40 B S T T T T T T T T T T T T T T T T T T	STN-17, 9.0'-10.5'		253	10/28/09	Hom	3/8"		Z	0	46.82	194.00	177.54	12.6
257 10/28/09 Hom No. 10 Yes 50.04 259 10/28/09 Hom No. 10 Yes 44.54 261 10/28/09 Hom No. 10 Yes 47.75 262 10/28/09 Hom No. 10 Yes 43.56 267 10/28/09 Hom No. 10 Yes 43.56 269 10/28/09 Hom No. 10 Yes 44.58 271 10/28/09 Hom No. 4 Yes 44.58 273 10/28/09 Hom No. 4 Yes 44.58 No sample 273 10/28/09 Hom No. 10 Yes 47.56 No sample 281 10/28/09 Hom No. 10 Yes 47.56 No sample 281 10/28/09 Hom No. 10 Yes 47.56 282 10/28/09 Hom No. 10 Yes 22.40 284 10/28/09 Hom No. 10	STN-17, 12.0'-13.5'		255	10/28/09		No. 4	1), 	Se	41.53	171.93		12.0
259 10/28/09 Hom No. 10 Yes 44.54 261 10/28/09 Hom No. 10 Yes 47.75 263 10/28/09 Hom No. 10 Yes 49.52 265 10/28/09 Hom No. 10 Yes 49.52 267 10/28/09 Hom No. 10 Yes 47.70 271 10/28/09 Hom No. 10 Yes 44.58 272 10/28/09 Hom No. 10 Yes 44.58 No sample 271 10/28/09 Hom No. 10 Yes 44.05 No sample 281 10/28/09 Hom No. 10 Yes 43.76 No sample 281 10/28/09 Hom No. 10 Yes 43.76 No sample 282 10/28/09 Hom No. 10 Yes 43.76 283 10/28/09 Hom No. 10 Yes 23.40 284 10/28/09 Hom	STN-17, 15.0'-16.5'		257	10/28/09	Hom	No. 10		, ,	- Se	50.04	174.18	156.93	16.1
261 10/28/09 Hom No. 10 Yes 47.75 263 10/28/09 Hom No. 10 Yes 49.52 265 10/28/09 Hom No. 10 Yes 49.52 267 10/28/09 Hom No. 10 Yes 43.56 271 10/28/09 Hom No. 10 Yes 43.56 273 10/28/09 Hom No. 4 No 44.58 273 10/28/09 Hom No. 10 Yes 44.58 No sample 281 10/28/09 Hom No. 10 Yes 43.56 283 10/28/09 Hom No. 10 Yes 43.76 285 10/28/09 Hom No. 10 Yes 47.56 280 10/28/09 Hom No. 10 Yes 22.40 289 10/28/09 Hom No. 10 No 76.13 284 10/28/09 Hom 11/2" No 76.81 <tr< td=""><td>STN-17, 20.0'-21.5'</td><td></td><td>259</td><td>10/28/09</td><td>Hom</td><td>No. 10</td><td></td><td>λ.</td><td>Se</td><td>44.54</td><td>176.86</td><td>152.55</td><td>22.5</td></tr<>	STN-17, 20.0'-21.5'		259	10/28/09	Hom	No. 10		λ.	Se	44.54	176.86	152.55	22.5
263 10/28/09 Hom No. 10 Yes 44.38 265 10/28/09 Hom No. 10 Yes 49.52 267 10/28/09 Hom No. 10 Yes 47.70 269 10/28/09 Hom No. 10 Yes 43.56 271 10/28/09 Hom No. 10 Yes 44.58 273 10/28/09 Hom No. 4 No 43.59 No sample 275 10/28/09 Hom No. 10 Yes 44.62 No sample 281 10/28/09 Hom No. 10 Yes 44.05 282 10/28/09 Hom No. 10 Yes 47.56 283 10/28/09 Hom No. 10 Yes 47.56 284 10/28/09 Hom No. 10 Yes 74.19 292 10/28/09 Len 11/2" No 74.19 294 10/28/09 Hom 34" No 77.1	STN-17, 25.0'-26.5'		261	10/28/09	Hom	No. 10		γ.	Se	47.75	191.06	165.81	21.4
265 10/28/09 Hom No. 10 Yes 49.52 267 10/28/09 Hom No. 10 Yes 47.70 269 10/28/09 Hom No. 10 Yes 43.56 271 10/28/09 Hom No. 4 No 44.58 275 10/28/09 Len No. 4 No 44.62 No sample 275 10/28/09 Hom No. 10 Yes 50.86 No sample 281 10/28/09 Hom No. 10 Yes 51.39 No sample 281 10/28/09 Hom No. 10 Yes 44.05 282 10/28/09 Hom No. 10 Yes 43.76 285 10/28/09 Hom No. 10 Yes 47.56 280 10/28/09 Len 11/2" No 76.13 280 10/28/09 Len 11/2" No 77.17 280 10/28/09 Hom 3/4"	STN-17, 30.0'-31.5'		263	10/28/09	Hom			Z	0	44.38			24.0
267 10/28/09 Hom No. 10 Yes 47.70 269 10/28/09 Hom No. 4 Yes 43.56 271 10/28/09 Hom No. 4 No 44.58 273 10/28/09 Len No. 4 No 44.62 275 10/28/09 Len No. 10 Yes 51.39 No sample 281 10/28/09 Hom No. 10 Yes 51.39 No sample 281 10/28/09 Hom No. 10 Yes 44.05 282 10/28/09 Hom No. 10 Yes 47.56 285 10/28/09 Hom No. 10 Yes 22.40 289 10/28/09 Len 11/2" No 46.95 290 10/28/09 Len 11/2" No 23.40 294 10/28/09 Hom 34" No 76.13 298 10/28/09 Hom 34" No 76.3	STN-17, 35.0'-36.5'		265	10/28/09	Hom	No. 10		λ	Se	49.52	156.43	128.73	35.0
269 10/28/09 Hom No. 4 Yes 43.56 271 10/28/09 Hom 3/8" No 44.58 272 10/28/09 Hom 3/8" No 44.58 No sample 277 10/28/09 No. 10 Yes 51.39 No sample 281 10/28/09 No. 10 Yes 44.05 No sample 283 10/28/09 Hom No. 10 Yes 44.05 No sample 283 10/28/09 Hom No. 10 Yes 47.56 No sample 283 10/28/09 Hom No. 10 Yes 47.56 No sample 285 10/28/09 Hom No. 10 Yes 47.56 No sample 285 10/28/09 Hom No. 10 Yes 47.56 No sample 287 10/28/09 Hom No. 10 No 46.95 No sample 289 10/28/09 Hom No. 10 No 43.90 No sample 294 10/28/09 Hom No No <t< td=""><td>STN-17, 40.0'-41.5'</td><td></td><td>267</td><td>10/28/09</td><td>Hom</td><td>No. 10</td><td></td><td>γ.</td><td>se</td><td>47.70</td><td></td><td></td><td>30.2</td></t<>	STN-17, 40.0'-41.5'		267	10/28/09	Hom	No. 10		γ.	se	47.70			30.2
271 10/28/09 Hom No. 4 Yes 44.58 273 10/28/09 Len No. 4 No 43.59 No sample 277 10/28/09 Len No. 10 Yes 50.86 No sample 281 10/28/09 Mo. 10 Yes 44.05 No sample 281 10/28/09 Hom No. 10 Yes 44.05 283 10/28/09 Hom No. 10 Yes 43.76 285 10/28/09 Hom No. 10 Yes 47.56 285 10/28/09 Hom No. 10 Yes 74.19 280 10/28/09 Len 3/8" No 76.13 290 10/28/09 Len 11/2" No 76.13 294 10/28/09 Hom 3/4" No 77.17 298 10/28/09 Hom 3/4" No 70.13 300 10/28/09 Hom No. 10 Yes 70.13 40/28/09 Hom 11/2" No Yes 70.13	STN-17, 45.0'-46.5'	:	269	10/28/09	Hom	No. 10		Ϋ́	Se	43.56		117.96	30.4
273 10/28/09 Hom 3/8" No 43.59 275 10/28/09 Len No. 4 No 44.62 No sample 273 10/28/09 No. 10 Yes 50.86 No sample 281 10/28/09 Hom No. 10 Yes 44.05 S83 10/28/09 Hom No. 10 Yes 43.76 285 10/28/09 Hom No. 10 Yes 47.56 285 10/28/09 Hom No. 10 Yes 47.56 289 10/28/09 Len 11/2" No 76.13 290 10/28/09 Len 11/2" No 76.13 294 10/28/09 Hom 34" No 76.13 296 10/28/09 Hom 34" No 77.17 298 10/28/09 Hom 34" No 70.13 298 10/28/09 Hom No Yes 70.13 298 10/28/09 Hom 30 70.13 298 10/28/09 <td>STN-18, 4.0'-5.5'</td> <td></td> <td>271</td> <td>10/28/09</td> <td>Hom</td> <td>No. 4</td> <td></td> <td>λ </td> <td>Se</td> <td>44.58</td> <td></td> <td>165.05</td> <td>15.1</td>	STN-18, 4.0'-5.5'		271	10/28/09	Hom	No. 4		λ 	Se	44.58		165.05	15.1
275 10/28/09 Len No. 4 No 44.62 277 10/28/09 11/2" No 50.86 No sample 281 10/28/09 Hom No. 10 Yes 51.39 No sample 281 10/28/09 Hom No. 10 Yes 44.05 285 10/28/09 Hom No. 10 Yes 47.56 287 10/28/09 Hom No. 10 Yes 22.40 289 10/28/09 Len 3/8" No 46.95 290 10/28/09 Len 11/2" No 74.19 294 10/28/09 Len 11/2" No 76.13 294 10/28/09 Hom 3/4" No 73.90 298 10/28/09 Hom 3/4" No 77.17 298 10/28/09 Hom No. 10 Yes 70.13 298 10/28/09 Hom No. 10 Yes 70.13 298 10/28/09 Hom No. 10 Yes 70.13 <td>STN-18, 9.0'-10.5'</td> <td></td> <td>273</td> <td>10/28/09</td> <td>Hom</td> <td>3/8"</td> <td>-</td> <td>V</td> <td>lo</td> <td>43.59</td> <td>189.46</td> <td>- 10</td> <td>19.2</td>	STN-18, 9.0'-10.5'		273	10/28/09	Hom	3/8"	-	V	lo	43.59	189.46	- 10	19.2
No sample 277 10/28/09 No. 10 No. 10 Yes 50.86 No sample 281 10/28/09 No. 10 Yes 51.39 No sample 283 10/28/09 Hom No. 10 Yes 44.05 285 10/28/09 Hom No. 10 Yes 43.76 285 10/28/09 Hom No. 10 Yes 47.56 289 10/28/09 Len 3/8" No 46.95 294 10/28/09 Len 11/2" No 74.19 296 10/28/09 Hom 3/4" No 43.90 298 10/28/09 Hom 3/4" No 70.13 298 10/28/09 Hom No. 10 Yes 70.13 298 10/28/09 Hom No. 10 Yes 70.13	STN-18, 12.0'-13.5'		275	10/28/09	Len	No. 4			0	44.62			23.4
No sample 279 10/28/09 No. 10 Yes 51.39 No sample 281 10/28/09 Hom No. 10 Yes 44.05 285 10/28/09 Hom No. 10 Yes 43.76 287 10/28/09 Hom No. 10 Yes 47.56 289 10/28/09 Len 3/8" No 46.95 290 10/28/09 Len 11/2" No 74.19 294 10/28/09 Hom 3/4" No 76.13 296 10/28/09 Hom 3/4" No 71.17 300 10/28/09 Hom No. 10 Yes 70.13 300 10/28/09 Hom No. 10 Yes 70.13 300 10/28/09 Hom 11/2" No 70.13	STN-18, 15.0'-16.5'		277	10/28/09		1 1/2"		_	lo	50.86		136.28	21.9
No sample 281 10/28/09 Hom No. 10 Yes 44.05 283 10/28/09 Hom No. 10 Yes 44.05 285 10/28/09 Hom No. 10 Yes 47.56 289 10/28/09 Hom No. 10 Yes 22.40 290 10/28/09 Len 3/8" No 74.19 294 10/28/09 Len 11/2" No 76.13 296 10/28/09 Hom 3/4" No 73.90 298 10/28/09 Hom 3/4" No 70.17 300 10/28/09 Hom No Yes 70.13 300 10/28/09 Hom 11/2" No 76.13 300 10/28/09 Hom 11/2" No 70.13	STN-18, 20.0'-21.5'		279	10/28/09		No. 10		Υ.	se	51.39	164.32	141.02	26.0
283 10/28/09 Hom No. 10 Yes 44.05 285 10/28/09 Hom No. 10 Yes 43.76 287 10/28/09 Hom No. 10 Yes 47.56 289 10/28/09 Len 3/8" No 46.95 290 10/28/09 Len 11/2" No 74.19 294 10/28/09 Len 11/2" No 76.13 296 10/28/09 Hom 3/4" No 73.90 298 10/28/09 Hom 3/4" No 71.17 300 10/28/09 Hom No. 10 Yes 70.13 302 10/28/09 Hom 11/2" No 70.74	_		281	10/28/09									
285 10/28/09 Hom No. 10 Yes 43.76 287 10/28/09 Hom No. 10 Yes 47.56 289 10/28/09 Len 3/8" No 46.95 290 10/28/09 Len 11/2" No 74.19 294 10/28/09 Len 11/2" No 76.13 296 10/28/09 Hom 3/4" No 43.90 298 10/28/09 Hom 3/4" No 71.17 300 10/28/09 Hom 11/2" No 76.13 302 10/28/09 Hom 11/2" No 70.13 302 10/28/09 Hom 11/2" No 70.13	STN-18, 30.0'-31.5'		283	10/28/09	Hom	No. 10		Ϋ́	se	44.05		140.97	28.9
287 10/28/09 Hom No. 10 Yes 47.56 289 10/28/09 Hom No. 10 Yes 22.40 290 10/28/09 Len 3/8" No 46.95 294 10/28/09 Len 11/2" No 74.19 296 10/28/09 Hom 3/4" No 43.90 298 10/28/09 Hom 3/4" No 71.17 300 10/28/09 Hom No. 10 Yes 70.13 302 10/28/09 Hom 11/2" No 70.74	STN-18, 35.0'-36.5'		285	10/28/09	Hom	No. 10		۶	es	43.76			43.9
5' 289 10/28/09 Hom No. 10 Yes 22.40 290 10/28/09 Len 3/8" No 46.95 3' 292 10/28/09 Len 11/2" No 74.19 3' 294 10/28/09 Len 11/2" No 76.13 5' 296 10/28/09 Hom 3/4" No 43.90 5' 298 10/28/09 Hom No. 10 Yes 71.17 5' 300 10/28/09 Hom 11/2" No 70.13 5' 302 10/28/09 Hom 11/2" No 70.74	STN-18, 40.0'-41.5'		287	10/28/09	Hom	No. 10		۶	se	47.56			19.6
290 10/28/09 Len 3/8" No 46.95 292 10/28/09 Len 11/2" No 74.19 294 10/28/09 Hom 3/4" No 76.13 296 10/28/09 Hom 3/4" No 71.17 300 10/28/09 Hom No. 10 Yes 70.13 302 10/28/09 Hom 11/2" No 70.13	STN-18, 45.0'-46.5'		289	10/28/09	Hom	No. 10		>	es	22.40			24.8
292 10/28/09 Len 11/2" No 74.19 294 10/28/09 Len 11/2" No 76.13 296 10/28/09 Hom 3/4" No 43.90 300 10/28/09 Hom No. 10 Yes 70.13 302 10/28/09 Hom 11/2" No 70.13	STN-20, 0.0'-1.5'		290	10/28/09	Len	3/8"		_	<u> </u>	46.95			10.3
294 10/28/09 Len 11/2" No 76.13 296 10/28/09 Hom 3/4" No 43.90 298 10/28/09 Hom 3/4" No 71.17 300 10/28/09 Hom No. 10 Yes 70.13 302 10/28/09 Hom 11/2" No 70.74	STN-20, 3.0'-4.5'		292	10/28/09	Len	1 1/2"		_	0	74.19			9.7
296 10/28/09 Hom 3/4" No 43.90 298 10/28/09 Hom 3/4" No 71.17 300 10/28/09 Hom No. 10 Yes 70.13 302 10/28/09 Hom 11/2" No 70.74	STN-20, 6.0'-7.5'		294	10/28/09	ren	1 1/2"		_	0	76.13	237.60		14.4
298 10/28/09 Hom 3/4" No 71.17 300 10/28/09 Hom No. 10 Yes 70.13 302 10/28/09 Hom 1 1/2" No 70.74	STN-20, 9.0'-10.5'		296	10/28/09	Hom	3/4"		Δ 	0	43.90			12.4
300 10/28/09 Hom No. 10 Yes 70.13 302 10/28/09 Hom 1.1/2" No 70.74	STN-20, 12.0'-13.5'		298	10/28/09	Hom	3/4"		_	0	71.17			17.1
302 10/28/09 Hom 11/2" No 70.74	STN-20, 15.0'-16.5'		300	10/28/09	Hom	No. 10		Υ	es	70.13			22.7
	STN-20, 20.0'-21.5'		302	10/28/09	Hom	1 1/2"			0	70.74			
STN-20, 25.0'-26.5' 304 10/28/09 Len 3/8" No 69.38 20	STN-20, 25.0'-26.5'		304	10/28/09	Len	3/8		_	<u>o</u>	69.38	208.07	186.58	18.3
				;)	D		•					Approved by : ILN

Project Name TVA- PAF Peabody Ash Pond

Moisture Content of Soil

ASTM D 2216


Project Number 175569069 Tested By JF

											Tested By JF	L
Maximum Particle Size in Sample	No. 10	No. 4	3/8"	3/4"	1 1/2"	3,						
Recommended Minimum Mass (g)	20	100	200	2,500	10,000	50,000				_	Test Method ASTM	ASTM
Material Type: Stratified, Laminated, Lensed, Homogeneous	snoeueb											
					Maximum	Material		Pass Min.		Wet Soil &	Dry Soil &	
	5		Date	Material	Particle	Excluded	pep	Mass?	Can Weight	Can Weight	CanWeight	Moisture
Source		Lab ID	Tested	Type	Size	Amount	Size	(Y/N)	(g)	(6)	(a)	Content (%)
STN-20, 30.0'-31.5'		306	10/28/09		No. 4			Yes	71.79	217.79	194.84	18.7
STN-20, 35.0'-36.5'		308	10/28/09		No. 10			Yes	71.20	269.40	235.29	20.8
STN-20, 40.0'-41.5'		310	10/28/09	Hom	No. 10			Yes	70.30	189.35	159.84	33.0
STN-20, 45.0'-46.5'		312	10/28/09	Hom	No. 10			Yes	49.87	150.29	129.52	26.1
STN-21, 4.0'-5.5'		315	10/28/09	Hom	No. 4			Yes	72.20	249.52	230.87	11.8
STN-21, 10.5'-12.0'		317	10/28/09	Hom	3/4"			No	72.89	252.02	231.06	13.3
STN-21, 13.5'-15.0'		319	10/28/09	Hom	1 1/2"			No	72.23	230.08	211.39	13.4
STN-21, 17.5'-19.0'		321	10/28/09	Hom	3/4"			No	70.39	193.11	176.86	15.3
STN-21, 22.5'-24.0'		323	10/29/09	Hom	3/4"			No	71.34	271.86	253.63	10.0
STN-21, 27.5'-29.0'		325	10/53/09		1 1/2"			No	77.11	225.27	208.25	13.0
STN-21, 32.5'-34.0'		327	10/29/09	Hom	1 1/2"			No	75.08	254.35	232.16	14.1
STN-21, 37.5'-39.0'		329	10/53/09		1 1/2"			No	49.45	181.21	168.25	10.9
STN-21, 42.5'-44.0'		331	10/29/09		3/4"			No	44.88	164.06	144.70	19.4
STN-22, 0.0'-1.5'		333	10/30/09		3/4"			No	76.72	144.10	137.00	11.8
STN-22, 3.0'-4.5'		332	10/30/09		1 1/2"			No	76.10	105.21	102.09	12.0
STN-22, 8.0'-9.5' No Recovery		337	10/30/09									
STN-22, 13.0'-14.5'		339	10/30/09		3/4"			No	75.83	171.28	159.82	13.6
STN-22, 18.0'-19.5'		341	10/30/09	Hom	3/4"			No	72.00	190.18	178.22	11.3
STN-22, 23.0'-24.5'		343	10/30/09		1 1/2"			No	74.70	151.09		19.5
STN-22, 28.5'-30.0'		345	10/30/09	Hom	1 1/2"			No	71.63	234.96	216.91	12.4
STN-2, 10.5'-12.0'		347	10/30/09	Hom	No. 10			Yes	45.22	149.94	121.48	37.3
STN-3, 10.5'-12.0'		349	10/30/09	Hom	1 1/2"			No	71.11	177.22	165.75	12.1
STN-4, 10.5'-12.0'		351	10/30/09	Len	3/4"			No	70.82	217.33	198.47	14.8
STN-5, 10.5'-12.0'		353	10/30/09	Hom	No. 4			No	43.89	137.76	125.30	15.3
STN-8, 10.5'-12.0'		322	10/30/09	Hom	3/8"			No	39.73	124.93	112.71	16.7
STN-9, 10.5'-12.0'		357	10/30/09	Len	3/4"			No	40.80	137.15	124.52	15.1
STN-11, 10.5'-12.0'		329	10/30/09	Hom	1 1/2"			No	47.54	116.45	106.55	16.8

Pore Pressure (tsf)

Maximum Effective Principal Stress Ratio Failure Criterion:

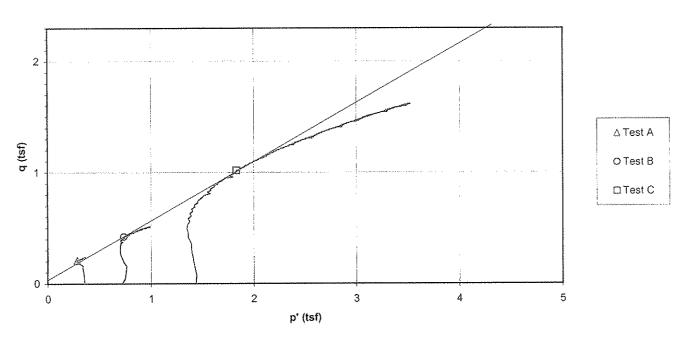
Effective Strength Envelope

Project Sample ID

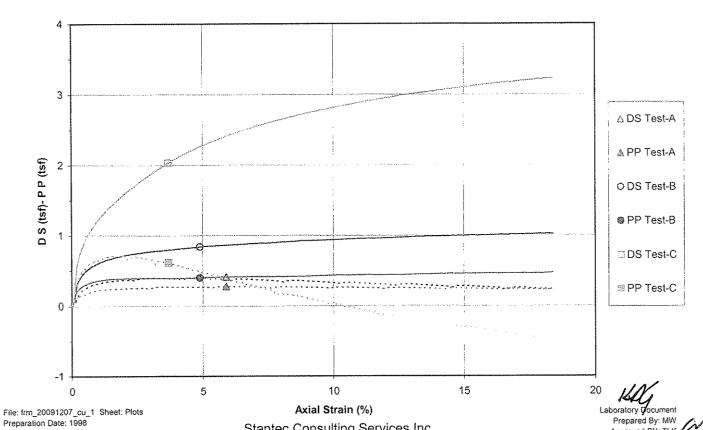
Revision Date: 1-2008

PAF - Peabody Ash Pond

STN-21 (M1), 2.8'-3.3' & STN-15 (M1), 5.3'-5.8' & STN-6 (M1), 6.5'-7.0' Failure Criterion:


Maximum Effective Principal Stress Ratio

 $\phi' = 32.1 \text{ deg.}$


Project No. 175569069 Test Number c' = 0.04 tsf

Approved BY: TLK

Deviator Stress and Induced Pore Pressure vs. Axial Strain

Stantec Consulting Services Inc.

ASTM D4767-04

Project Name	DAF - Da	abody Ash	Pond							Projec	t Number	175569069
Sample Identification		VI1), 2.8'-3								····· ′	t Number	CU-1A
Visual Description			ıy, moist, fir	m. mine	spoil						pared By	MC
Undisturbed			M1), 2.8'-3.									12-8-2009
On a still a Compatible	0.00	AOT14 DO	E4 Mothed	Λ 1	laufal Limit	- N1/A		Plactic Limi	 + λι/Λ	Plactic	oity Indov	NIA
Specific Gravity	2.69	. AS IM DE	354 Method	A L	Liquid Limit	N/A		Plastic Limi	t N/A	Masu	city Index	N/A
					Initia	al Specim	en Data	*				***************************************
Specimen Diameter (i	n.)	Specimer	n Height (in.	.)		\	/olumes	(in³)		Specimen		
Top 2.859	,	. 1	5.967			Sample	38.363	35 (V _o)		Wet Weigh	t (g)	1214.11
Middle 2.861	_	2	5.962			Solids	24.731	17 (VS _o)		Dry Weight	(g)	1090.27
Bottom 2,856	-	3	6.018			Water	***************************************	88 (Vw _o)		Wet Unit We	ight (pcf)	120.6
Avg. 2.8587	_ " (D _o)	4	5.963			Voids	4	18 (Vv _o)		Dry Unit We	eight (pcf)	108.3
Area (in²) 6.4183	-	Avg. (H _o)		Dea	ree of Satu	uration (%)		.4 (S _o)		•	,	
Moisture Content (%)		Final Trin				Void Ratio					•	
- TVIOISTATO CONTROLLE (70)	1 7 3 1					Saturation						
Catilla 9 Caturatad	. 10/04		Dm							c	Set up By	KDG
Set Up & Saturated		XX	. Dry_	(noi)	- Eigal Bor	e Pressure	Darame	stor R	0.06	`	Date	12-9-09
Back Pressure Satura	ited to:		85	(psi)	rinai Poi	e Pressuit	a mailaille	HEI D	0.96			
		n n .	.		0 1	- D				Panel Board	ı Mumber .	Ç
Height Readings (in.)			ssure Buret		Chambei		<i>*</i> ` `		0	t to today to the A	E 0400	(1.1.)
Initial 0.1413	-	Initial		(in.)	Initial	10.08	_(in.)		•	Height (in.)	5.9433	1 4
Final 0.1753		Final		(in.)	Final	11.94	_(in.)		•) Method A	6.3448	
Change0.0340	_ (ΔH _o)	Change	-24.63	(in.)	Change	1.86	_ (in.)	٤	Specimen \	Volume (in ³) _	37.71	(Vs)
					(Consolida	tion					
Height Readings (in.)		Back Pre	ssure Burel	tte Readi	inas	Chamber	Burette	Readings		Pressure	es (psi)	
Initial 0.1753		Initial		(in.)		Initial	16.17	-		Chamber	90	
Final 0.1965		Final		(in.)		Final	10.38			Back	85	
Change -0.0212	– (ΔH _c)	Change		(in.)		Change	-5.79	``		Lateral	5	(σ ₃)
·······	··· '	· ·	-0.00	(***-)	V	olume (in ³)		('''.') 39 (V _c)				(03)
Height (in.)	5.9221	_			Volume -			23 (VWc)		t (min)	4 504	
Area (in ³) Method B						•				t ₅₀ (min.)	1,001	
Diameter (in.)	2.8111					ontent (%	*			Maid Datia	0.496	
Dry Density (pcf)	113.0	-		Deg	gree of Sati	uration (%	100	<u>.0</u> (S _c)		Void Ratio_	0.486	
						After Te	st					
Final Measuren	nents		Final N	loisture (Content		Stres	ses (memb	rane corre	cted) at Failu	re (psi)	
Maximum Diameter	3.351	_(in.)	Wet Weigh	nt (g)	1287.29	<u> </u>		Correct	ed Deviato	or <u>0.42</u>	σ _σ (tsf)	
Wet weight (g)	1287.29	_(WWf)	Dry Weigh	t (g)	1090.27	, 		Major Pr	incipal	0.50	σ ₁ ' _f (tsf)	
Corrected Diameter	3.327	(in.)	Tare Weig	ht (g)	0.00)		Minor Pr	incipal	0.08	σ ₃ ' _f (tsf)	
		-					R	ate of Strai	n (% / min.	.) 0.196		
Youngs Modulu	s for Memi	orane (psi)	200				Ax	ial Strain at	Failure (%	5.90		
Mem	brane Thic	kness (in.)	0.012			Failur	e Criterio	n: Maximur	n Effective	Principal Str	ess Ratio	
Failure Sket	ch	1	Deviator Stres	s and Induc	ced Pore Press	sure vs. Strair	;		۵	oʻvs. q Plot		
	7	e4 T	**********************		magn continuity statement and attended in			2 —		- The Control of the		
1 /-	(()s) dd	g da unterstate grant to strape to come to the		a era de tomo qui terbuigh condition preting. I	Δт	est-A DS	(st) d			ΔΤ.	est-A
		o 1 −		i	:	A.T	oet-A DD	ă']			1	. olwa-1
) /	•	8 1 - 8 S 0 - 8	=== j&				est-A PP	0 +	<u> </u>	***************************************		
	1	0	5	10	15	20		0		1	2	
L	1			Strain %	6					q' (Isf)		, , 1
Comments:		J									K	Of K
	,								·····			7

File: frm_20091207_cu_1 Sheet: Specimen-A Preparation Date: 1998 Revision Date: 1-2008

ASTM D4767-04

Project Name	PAF . Pa	abody Ash	Pond							Project	Number	175569069
Sample Identification		M1), 5.3'-5	······································		we			***************************************			Number -	CU-1B
Visual Description		y (CL), gra		irm. mi	ne spoil					****	ared By	MC
Undisturbed	***************************************	STN-15 (I								,	Date	12-8-2009
											•	
Specific Gravity	2.69	_ASTM D8	354 Metho	d A	Liquid Limi	t N/A	. F	Plastic Limit	N/A	Plastici	ty Index_	N/A
					Initi	ial Specim	en Data					
	- 1	0	- 11-1-64 /					~ 2)		Canaiman		
Specimen Diameter (ii	•		n Height (i	n.)			olumes (i	•		Specimen	(0)	1292.68
Top 2.880	-	1		→		Sample Solids	39.178			Wet Weight Dry Weight (1148.63
Middle 2.855	-	2	6.091	-			26.055			Wet Unit Weight	· · ·	125.7
Bottom 2.850	_	3		_		Water Voids	13.122	0 (Vw _o)		^	· ' •	111.7
Avg. 2.8617	-	4	6.092	_	Dagras of Col			-		Dry Unit Wei	Bur (boi)	111.7
Area (in²) 6.4317		Avg. (H _o)		-	Degree of Sat		***************************************	<u>0</u> (S _o)			-	
Moisture Content (%)	12.5	Final Trin	nmings			Void Ratio		+				
					-	Saturati	on					
Set Up & Saturated:	: We	t xx	Dry	,						Se	et up By	KDG
Back Pressure Satura			- 80	(psi)	Final Po	re Pressure	e Paramet	ter B	0.98		Date	12-9-09
				'' ´						Panel Board	Number ⁻	В
Height Readings (in.)		Back Pre	ssure Bur	ette	Chambe	er Burette					•	
Initial 0.1563		Initial	16.74	(in.)	Initial	10.88	(in.)	;	Specimen	Height (in.)	6.0710	(H _s)
Final 0.1767	-	Final	0	(in.)	Final	14.57	(in.)) Method A	6.3885	-
Change -0.0204	- (ΔH _o)	Change	-16.74	_ (in.)	Change	3.69	(in.)	S	oecimen \	√olume (in³)	38.78	
	_ ' 0/			_ `	_	Consolida						· · · · · ·
						Consolida	lion					
Height Readings (in.)		Back Pre	ssure Bur	ette Re	eadings	Chambei	Burette F	Readings		Pressures	s (psi)	
Initial 0.1767		Initial	2.11	(in.)		Initial	17.74	(in.)		Chamber	90	
Final 0.2018	-	Final	8.99	 (in.)		Final	10.03	 (in.)		Back	80	
Change -0.0251	 (ΔH _c)	Change	-6.88	(in.)		Change	-7.71	(in.)		Lateral	10	(σ_3)
Height (in.)	- 6.0459) (H _c)			٧	/olume (in ³	36.714	6 (V _c)				
Area (in3) Method B	6.0727	7 (A _c)			Volume -	-Water (in ³	10.659	 1_(VWc)		D ₅₀ (min.)	1.257	
Diameter (in.)	2.7806	5 (D _c)			Water (Content (%	15.	2				
Dry Density (pcf)	119.2	2			Degree of Sat	turation (%	100.	0 (S _c)		Void Ratio_	0.409	
****						A 64 T -						
						After Te	St					
Final Measuren	nents		Final	Moistu	re Content		Stress	es (membr	ane corre	cted) at Failure		
Maximum Diameter	3.75	_ (in.)	Wet Wei	ght (g)	1323.3			Correcte	d Deviato			
Wet weight (g)	1323.31	_(WWf)	Dry Wei	ght (g)	1148.6	3		Major Pri	ncipal	1.16 σ		
Corrected Diameter	3.72	<u>3</u> (in.)	Tare We	ight (g	0.0	0		Minor Pri	ncipal	0.31_σ	_{3 f} (tsf)	
							Ra	ate of Strain	(% / min			
Youngs Modulu	s for Mem	brane (psi)	20	<u>0</u>				al Strain at I				
Mem	brane Thic	kness (in.)	0.01	2		Failur	e Criterior	n: Maximum	Effective	Principal Stre	ss Ratio	
Failure Sket	ch	7	Doubles St	occ and	Induced Pore Pres	coura ve Strain				o' vs. q Plot		
	_	_4 T	Deviator Str	ess and	nadcea rore ries	ssure vs. suan		2 7		5 V5, Q 1-101	emodalustuses)	
		(ls)				то	est-B DS	(FS ,		ł		لستت
		dd 2 - ≪1 -		5			Acl. R DO	(Js) 1	<u>~</u>		ОТ	est-8
1		81 ± 80 ¥	- \$				est-8 PP	0				
	7	0	5		10 15 ain %	20		0		1	2	
				Silic	201 /0					q' (tsf)		a los
Comments:											k	11/1
					···							

File: frm_20091207_cu_1 Sheet: Specimen-B Preparation Date: 1998 Revision Date: 1-2008

ASTM D4767-04

Project Name	DAE Do	abody Ash	Pond					Project Number	175569069
Sample Identification		1), 6.5'-7.0				······································		_ Toject Number	CU-1C
Visual Description			I (CL), gray, mo	ist, firm, mine s	lioa			Prepared By	MC
Undisturbed			1), 6.5'-7.4'					Date	12-8-2009
									
Specific Gravity	2.69	ASTM D8	54 Method A	Liquid Limit	N/A	Plastic Lim	it N/A	Plasticity Index	N/A
		-				•		~	
				Initia	al Specime	en Data			
Specimen Diameter (i	n.)	Specimen	Height (in.)		V	olumes (in³)		Specimen	
Top 2.856		1	5.941		Sample	37.5512 (V _o)		Wet Weight (g)	1301.68
Middle 2.837		2	5.955		Solids	26.1283 (VS _o)		Dry Weight (g)	1151.84
Bottom 2.812		3	5.956		Water	9.1434 (Vw _o)		Wet Unit Weight (pcf)	132.1
Avg. 2.8350	(D _o)	4	5.944		Voids	11.4229 (Vv _o)		Dry Unit Weight (pcf)	116.9
Area (in²) 6.3124	(A _o)	Avg. (H _o)	5.9488	Degree of Satu	ıration (%)	80.0 (S _o)			
Moisture Content (%)	13.0	Final Trim	ımings		Void Ratio	0.437			
					Saturatio	on			
Set Up & Saturated	: Wet	xx	Dry					Set up By	KDG
Back Pressure Satura			70 (psi)	Final Pore	Pressure	Parameter B	0.97	Date	12-9-09
								- Panel Board Number	A
Height Readings (in.)		Back Pres	ssure Burette	Chamber	Burette				······································
Initial 0.1315		Initial	16.33 (in.)	Initial	12.23	(in.)	Specimen	Height (in.) 5.9504	(H _s)
Final 0.1299	-	Final	9.46 (in.)	Final	12.46	(in.)) Method A 6.3158	
Change 0.0016	 (ΔH _o)	Change	-6.87 (in.)	Change	0.23	(in.)	Specimen \	/olume (in ³) 37.58	(V _s)
			``		Consolida	tion		***************************************	
Height Readings (in.)		Dack Dro	ssure Burette R	eadinge	Chamber	Burette Readings		Pressures (psi)	
Initial 0.1299		Initial	1.61 (in.)	caungs	Initial	17.28 (in.)		Chamber 90	
					Final	12.16 (in.)		Back 70	
Final 0.1667	- (****)	Final	` '						(m)
Change -0.0368	_ ` ~	Change	-4.76 (in.)	V	Change olume (in³)	` ´		Lateral 20	(σ_3)
Height (in.)	5.9136	-			•			D (min) 16	
Area (in³) Method B		-			Water (in³)	9.9141 (VWc)		D ₅₀ (min.) 16	
Diameter (in.)	2.7857	_			ontent (%)			Void Datio 0.370	
Dry Density (pcf)	121.7	-		Degree of Sati	aration (%)	100.0 (S _c)		Void Ratio 0.379	
					After Te	st			
Final Measuren	nents		Final Moist	ure Content		Stresses (memb	rane correc	oted) at Failure (psi)	
Maximum Diameter	3.376	_(in.)	Wet Weight (g) 1314.31		Correct	ed Deviato	r <u>2.03</u> σ _d (tsf)	
Wet weight (g)	1314.31	_(WWf)	Dry Weight (g)	1151.84		Major Pr	incipal	2.85 σ ₁ ' _f (tsf)	
Corrected Diameter	3.352	<u>(in.)</u>	Tare Weight (9)0.00	•	Minor Pr	incipal	0.82 σ _{3'f} (tsf)	
						Rate of Strai			
Youngs Module						Axial Strain at	Failure (%	3.70	
Mem	brane Thic	kness (in.)	0.012		Failure	e Criterion: Maximui	n Effective	Principal Stress Ratio	
Failure Sket	ch	1	Deviator Stress and	Induced Pore Press	ure vs. Strain		p	o' vs. q Plot	
		g 3]				4 I		Land Color Control Con	
\ /	1	# 2 1 g 1			— ☐ Tes	1-C DS (£ 3 +		a la	est-C
1	1	32 1 0 1 30 1 0 1		And wheels and the second state of	閥 Tes	I-C PP		2	
	/	1				0 1		tionational regions to animative street and the str	
		0		10 15 rain %	20	0	1	2 3 4 q'(tsf)	/
]	O:	unr 79				d list	VAL V
Comments:									1414

File: frm_20091207_cu_1 Sheet: Specimen-C Preparation Date: 1998 Revision Date: 1-2008

	Consolidation Valu	ies	Final Val	ues	Tested By	KDG	Project Number	175569069
Height	5.922 (in.)	15.042 (cm)	Height	4.833 (in.)	Dale	12-10-09	Test Number	CU-1A
Diameter	2.811 (in)	7.140 (cm)	Dia. avg.	3.258 (in)	Press No.	1	Data File ID	1A
Area	6.207 (in²)	40,043 (cm²)	Area avg.	8.335 (in²)	Panel No.	С	Lateral Pressure (psi)	5.0
					-		Chamber Pressure - σ ₃ (psi)	90

												Cha	imber Pressu	re - σ ₃ (psi)	90
Clock		Deflection Dial	Pore Pressure	Corrected			Corrected	Devialor	Corrected Deviator				p'	q	Effective Principal
Time	Load	Reading	Reading	Hieght	Strain	Corrected	Load	Stress	Stress*	σ_1	σ,	σ_3	(\sigma_1'+\sigma_3')/2	$(\sigma_1 - \sigma_3)/2$	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	(tsf)	(tsf)	(tsf)	(tsf)	(Isf)	(Isf)	(tsf)	σ ₁ / σ ₃
0:00:00	13.7	-0.021	85.1	5.922	0.00	40.0429	0.0	0.000	0.000	0,360	0.360	0.356	0.358	0.002	1.011
0:00:40	24.0	-0.015	85.9	5.916	0,11	40.0857	10.3	0.119	0.119	0.479	0.415	0.293	0.354	0.061	1.419
0:01:12	31.6	-0.009	86.6	5.910	0,20	40.1241	17.9	0.208	0.207	0,567	0.454	0.243	0.348	0.105	1.867
0:01:43	35.4	-0.003	87.0	5.904	0.30	40.1642	21.7	0.251	0.250	0.610	0.469	0.216	0.343	0.127	2.177
0:02:13	38.0	0.003	87.3	5.898	0.40	40.2048	24.3	0.281	0.280	0.640	0.481	0.198	0.340	0.142	2.434
0:02:42	40,0	0.009	87.4	5.892	0.50		26.2	0.303	0.302	0.662	0.494	0.189	0.341	0.153	2.621
0:03:11	41.5	0.015	87.5	5.887	0.60		27.7	0.320	0.319	0.679	0.505	0.182	0.343	0.161	2.769
		0.013	87.8	5,880	0.70		29.1	0.336	0.334	0.694	0.493	0.156	0.325	0.169	3.167
0:03:43	42.8				0.80	40.3658	30.0	0.346	0.344	0.704	0.494	0.147	0.320	0.174	3,367
0:04:12	43.7	0.027	88.0	5,875				0.346		0.704	0.495	0.138	0.316	0.179	3.592
0:04:42	44.6	0.032	88.1	5.869	0.90	40.4067	30.9		0.353		0.497	0.130	0.314	0.183	3.778
0:05:14	45.4	0.038	88.2	5.863	1.00		31.7	0.364	0.362	0.722			0.312	0.185	3.904
0:05:45	45,9	0.045	88.2	5.857	1,10		32.1	0.369	0.366	0.726	0.498	0.127	0.309	0.187	4.077
0:06:15	46,3	0,050	88.3	5,851	1.20		32.6	0.374	0.371	0.731	0.497	0.122	0.310	0.190	4,159
0:06:44	46.8	0,056	88.3	5.845	1,30		33.1	0.379	0.376	0,736	0.500	0.120			4.277
0.07.15	47.2	0.062	88.4	5,839	1,40		33,5	0,384	0.380	0,740	0.501	0.117	0.309	0.192	
0:07:43	47.5	0.068	88.4	5.833	1.50		33.7	0,386	0,382	0.742	0.501	0.115	0.308	0.193	4.351
0:08:14	47.7	0.074	88.4	5.827	1.61	40.6964	34.0	0.388	0.384	0.744	0.500	0.112	0.306	0.194	4.460
0:08:45	48.0	0.080	88.5	5.821	1,71	40.7376	34.3	0.391	0.387	0.747	0.501	0.110	0.305	0.195	4.544
0:09:14	48.0	0.086	88.5	5.815	1.80	40.7769	34.2	0,390	0.386	0.746	0.498	0.108	0.303	0.195	4.604
0:09:46	48.3	0.092	88.5	5.809	1.91	40.8215	34.6	0.394	0,390	0.750	0.500	0.107	0.303	0.197	4.686
0:10:17	48.5	0.098	88.5	5.803	2.00	40,8620	34.8	0.396	0.391	0.751	0.500	0.106	0.303	0.197	4.735
0:10:47	48.8	0.104	88.6	5.798	2.10	40.9022	35.1	0.399	0.394	0.754	0.502	0.104	0.303	0.199	4.813
0:11:16	48.5	0.109	88.6	5.792	2.20	40.9440	34.8	0.395	0.390	0.750	0.497	0.103	0.300	0.197	4.826
0:11:47	49.0	0.116	88.6	5.786	2.31	40,9878	35.3	0.400	0.394	0.754	0.500	0.102	0.301	0,199	4.921
0:12:18	48.7	0.121	88.6	5.780	2.40	41,0273	35.0	0.397	0.391	0.751	0.496	0.101	0.298	0.197	4.911
0:12:51	49.1	0.128	88.6	5.774	2.50	41,0718	35.3	0.400	0.394	0,754	0.497	0.099	0.298	0,199	5.000
0:13:22	49.2	0.133	88.6	5.768	2.60	41,1127	35.4	0.401	0.394	0,754	0.497	0.099	0.298	0,199	5.010
0:13:53	49.2	0.139	88.6	5.762	2.70		35.5	0.401	0.395	0.755	0.498	0.099	0.299	0.199	5.008
0:14:26	49.1	0.145	88.6	5.756	2.81		35.4	0,400	0,393	0.753	0.498	0,101	0.300	0.198	4.916
0:14:55	49.3	0.151	88.6	5.750	2.90		35.6	0.402	0,394	0.754	0.502	0.104	0.303	0.199	4.831
0:15:26	49.4	0.157	88.5	5.744	3.00		35.7	0.402	0.395	0.755	0.506	0.108	0.307	0.199	4.694
0:15:59	49.5	0.163	88.7	5.738	3.10		35.8	0.403	0,395	0.755	0.490	0.091	0.291	0.200	5.377
0:16:30	49.4	0.169	88.8	5.733	3.20		35.7	0.401	0.393	0.753	0.485	0.087	0.286	0.199	5.552
0:10:00	49.4	0.175	88,8	5.727	3,30		35.6	0.400	0.392	0.752	0.481	0.085	0.283	0.198	5.654
0:17:34	49.7	0.180	88.8	5.721	3.40		35.9	0.403	0.395	0.755	0.482	0.083	0.283	0.199	5.778
	49.7	0.186	88.9	5.715	3.50		36.0	0.404	0.395	0.755	0.481	0.082	0.282	0.199	5.840
0:18:06				5.709	3.60		35.9	0.402	0.393	0.753	0.479	0.082	0.281	0.199	5.837
0:18:38	49.7	0.192		5.703	3.70		35.9	0.402	0.392	0.752	0.480	0.085	0.282	0.198	5.675
0:19:10	49.6	0.198	88.8				36.1	0.403	0.394	0.754	0.481	0.084	0.282	0.199	5.747
0:19:41	49.8	0.204	88.8	5.697	3.80						0.483	0.084	0.284	0.199	5.717
0:20:11	50.0	0.210	88.8	5.691	3.90		36.2	0.404	0.395	0.755		0.084	0.283	0.199	5.731
0:20:41	49.9	0.216		5.685	4.00		36.2	0.403	0.394	0.754	0.481	0.085	0.285	0.200	5.731
0:21:12	50.2	0.222		5.679	4.10		36.5	0.406	0.396	0.756	0.485		0.285	0.200	5.696
0:21:42	50.3	0.228	88.8	5.673	4.20		36.5	0.407	0.396	0.756	0.485	0.085		0.199	5.692
0:22:13	50.2			5.667	4.30		36.4	0.405	0.394	0.754	0.483	0.085	0.284	0.201	5.741
0:22:42	50,5			5.662	4,40		36.8	0.409	0.398	0.758	0.486	0.085	0.286		
0;23:11	50.6			5.656	4.50		36.8	0.408	0.397	0,757	0.487	0.086	0.286	0.201	5.687
0:23:42	50.5			5.650	4.60		36.8	0.408	0.397	0.757	0.486	0.086	0.286	0.200	5.659
0:24:10	50.9	0.257	88.8	5.644	4.70	42.0177	37.1	0.411	0.400	0.760	0.489	0.086	0.288	0.202	5.687
0:24:40	51.3	0.263	88.8	5.638	4.80	42.0622	37,6	0.416	0.404	0.764	0.494	0.086	0.290	0.204	5.727
0:25:10	51.3	0.269	88.8	5,632	4.90	42.1060	37.5	0.415	0.403	0.763	0.493	0,086	0.289	0.203	5,707
0:25:40	51.3	0.275	88.8	5,626	5.00	42.1499	37,5	0.414	0.402	0.762	0.493	0.087	0.290	0.203	5.672
0:26:12	51.8	0.281	88.8	5,620	5.10	42.1956	38,1	0.419	0.407	0.767	0.498	880.0	0.293	0.205	5.678
0:26:42	52.0	, 0.287	88.7	5,614	5.20	42.2394	38,2	0.421	0.408	0.768	0.502	0.090	0.296	0.206	5.565
0:27:12	52.0			5.608	5.30	42.2840	38.3	0.421	0.408	0.768	0,505	0.093	0.299	0.206	5.421
0:27:42	52.2		88.6	5.602	5.40	42.3283	38.5	0.423	0.409	0.769	0.511	0.098	0.305	0.207	5.211
0:28:13	52.4			5.596	5.50	42.3737	38.7	0.424	0.411	0.771	0.499	0.084	0.291	0.207	5.917
0:28:42	52.5				5,60			0.425	0.412	0.772	0.499	0.083	0.291	0.208	5.975
0:29:10	52.8				5.70		39.0	0.427	0.413	0.773	0.497	0.080	0.288	0.209	6.227
0:29:41	53.0				5.80		39,3	0.430	0.415	0.775	0.497	0.078	0.288	0.210	6,344
0:30:12	53.0				5.90		39.3	0.430	0.415	0.775	0.497	0,078	0.287	0.209	6,389
V.00.12	50.0	0.02.0	W 10	2.0.0	5.00										

Tesled By ___ KDG Project Number 175569069 Consolidation Values Final Values Test Number 12-10-09 Date CU-1A 4.833 (in.) Heighl 5.922 (in.) 15.042 (cm) Height Press No. Data File ID Diameter 2.811 (in) 7.140 (cm) Dia. avg. 3.258 (in) 1A 40.043 (cm²) 8.335 (in²) Ċ Lateral Pressure (psi) 5.0 6.207 (in²) Panel No. Area Area avg. Chamber Pressure - 03 (psi) 90

												Çh	amber Pressi	ire - σ ₃ (psi)	90
		Deflection	Pore						Corrected						Effective
Clock		Dial	Pressure	Corrected			Corrected	Deviator	Deviator				p'	q	Principal
Time	Load	Reading	Reading	Hieght	Strain	Corrected	Load	Stress	Stress*	σ_1	σ_1	Q ³ ,	$(\sigma_1' + \sigma_3')/2$	$(\sigma_1 - \sigma_3)/2$	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(Isf)	(tsf)	σ_1 / σ_3
0:30:42	53.1	0.335	88.9	5.567	6.00	42,6003	39.4	0.430	0.415	0.775	0.497	0.078	0.287	0.209	6.370
0:31:12	53.0	0.340	88.9	5.561	6.10	42,6448	39.3	0.429	0.414	0.774	0.497	0.080	0.289	0.209	6.220
0:31:44	53.1	0.346	88.9	5.555	6.20	42.6894	39.4	0.429	0.414	0.774	0.499	0.081	0.290	0.209	6.146
0:32:14	53.2	0,352	88.9	5.549	6.30		39.4	0.429	0.414	0.774	0.498	0.081	0.290	0.209	6.157
0:32:44	53.3	0.358	88.8	5.543	6.40		39.5	0.430	0.414	0.774	0.501	0.083	0.292	0.209	6.037
0:33:17	53.5	0.364	88.8	5.537	6.50		39.7	0.431	0.415	0.775	0.502	0.083	0.293	0.210	6.040
0:33:47	53.7	0.370	88,88	5.531	6.60		40,0	0.434	0.418	0.778	0.505	0.083	0.294	0.211	6.055
0:34:18	53.8	0.376	88.88	5.525	6.70		40.0	0,434	0.417	0.777	0.505	0.084	0.295	0.211	6.008
0:34:50	54.0	0.382	88.8	5.519	6.80		40.2	0,435	0.419	0.779	0.508	0.085	0.297	0.211	5.954
			88.8	5.513	6.90		40.3	0,436	0.419	0.779	0.508	0.086	0.297	0.211	5.929
0:35:22	54.0	0.388		5.508	7.00		40.2	0,434	0.417	0.777	0.509	0.088	0.298	0.210	5.780
0:35:53	53.9	0.394	88.8				40.2			0.780	0.509	0.088	0.300	0.212	5.808
0:36:24	54.2	0.400	88.8	5.502	7.10			0.437	0.420				0.301	0.212	5.738
0:36:54	54.3	0.406	88.8	5,496	7.20		40.6	0.437	0.419	0.779	0.512	0.089	0.301	0.212	5.731
0:37:26	54.3	0.411	88.8	5.490	7.30		40,6	0.437	0.419	0.779	0.512	0.089	0.301	0.212	5.577
0:37:58	54.1	0.417	88.7	5,484	7.40		40.4	0.434	0.416	0.776	0.511	0.092			5.102
0:38:29	54.2	0.423	88.6	5,478	7.50		40.4	0,434	0.416	0.776	0.522	0.102	0.312	0.210	
0:39:01	54.1	0.429	88.6	5,472	7.60		40.4	0.434	0.415	0.775	0.518	0.100	0.309	0.209	5.194
0:39:34	54.4	0.435	88.7	5.466	7.70		40.7	0.436	0.417	0.777	0.516	0.095	0.305	0.210	5.424
0:40:05	54.4	0.441	88.8	5.460	7.80	43.4304	40,6	0.435	0,416	0.776	0.507	0.087	0.297	0.210	5.798
0:40:36	54.6	0.447	8.88	5.454	7,90	43.4767	40,9	0.438	0.418	0.778	0.507	0.085	0.296	0.211	5.969
0:41:09	54.7	0.453	88.8	5.448	8.00	43.5255	40.9	0.437	0.418	0.778	0.506	0.084	0.295	0.211	6.007
0:41:38	54.6	0.459	88.8	5.442	8.10	43,5718	40.9	0.436	0.416	0.776	0.504	0.084	0.294	0.210	6.028
0:42:09	54.7	0.465	88.8	5.436	8.20	43,6195	41.0	0.437	0.417	0.777	0.505	0.084	0.295	0.210	5,993
0:42:40	55.1	0.471	88.8	5.431	8.30	43.6672	41.4	0.441	0.420	0.780	0.508	0.084	0.296	0.212	6.039
0:43:11	55.1	0.477	88.8	5.425	8.40	43,7145	41.4	0.440	0.420	0.780	0.511	0.087	0.299	0.212	5.862
0:43:40	55.0	0.482	88.8	5.419	8.50	43.7617	41.3	0.439	0.418	0.778	0.510	0.088	0.299	0.211	5.796
0:44:10	55.3	0.488	88.8	5.413	8.60	43.8094	41.5	0.441	0.420	0.780	0.511	880.0	0.300	0.212	5.820
0:44:39	55.5	0.494	88.8	5.407	8.70		41.7	0.442	0.421	0.781	0.515	0.090	0.302	0.212	5.734
0:45:10	55.5	0.500		5.401	8.80		41,8	0.443	0.421	0.781	0.514	0.089	0.302	0.212	5.763
0:45:40	55.7	0.506		5.395	8.90		41,9	0.444	0.422	0.782	0.517	0.091	0.304	0.213	5.669
0:46:09	55.9	0.512		5.389	9.00		42.2	0.446	0.424	0.784	0.519	0.091	0.305	0.214	5.688
0:46:40	56.0	0.512		5.383	9.10		42.2	0.446	0.423	0.783	0.519	0.092	0.306	0.214	5.635
0:45:40	56.1	0.524	88.7	5.377	9.20		42.4	0.447	0.424	0.784	0.520	0.092	0.306	0.214	5.640
0:47:40	56.5	0.530		5.371	9.30		42.8	0,451	0.428	0.788	0.525	0.094	0.310	0.216	5.605
				5,366	9.40		42.7	0,449	0.426	0.786	0.524	0.094	0.309	0.215	5.575
0:48:11	56,4	0.536		5,360	9.50		42.9	0.451	0.428	0.788	0.527	0.096	0.311	0.216	5.511
0:48:40	56.6	0.542							0,423	0.791	0.532	0.097	0.315	0.217	5.472
0:49:11	57.0	0.548		5,353	9,60		43.3	0.455					0.317	0.217	5.356
0:49:41	57.1	0.554		5.348	9.70		43.4	0.455	0.431	0.791	0.535	0.100			5.162
0:50:10	57.3	0.560		5.342	9,80		43.6	0.456	0.432	0.792	0.541	0.105	0.323	0.218	
0:50:39	57.5	0,565		5.336	9,90		43.8	0.458	0.434	0.794	0.549	0.111	0.330	0.219	4.945
0:51:08	57.8	0,571	88.7	5.330	10.00		44.1	0.461	0.436	0.796	0.535	0.095	0.315	0.220	5.646
0:51:38	57.9	0,577		5.324	10.10		44.2	0.461	0.436	0.796	0.534	0.094	0.314	0.220	5.668
0:52:09	58.2	0.583		5.318	10,20		44.5	0.464	0.439	0,799	0.533	0.091	0.312	0.221	5.866
0:52:38	58.3	0.589	88.7	5.312	10.30		44.6	0.464	0.439	0.799	0.534	0.091	0.312	0.221	5,886
0:53:10	58.0	0.595	88.7	5.306	10.40	44.6898	44.3	0,461	0.435	0.795	0.530	0.091	0.310	0.220	5.843
0:53:41	58.1	0.601	88.7	5,300	10.50	44.7389	44.4	0.462	0,436	0.796	0.531	0.091	0.311	0.220	5.833
0:54:12	58.4	0.607	88.7	5.294	10.60	44.7897	44.6	0.463	0.437	0.797	0.534	0.093	0.313	0.221	5.768
0:54:44	58.4	0.613	88.7	5,288	10.70	44.8410	44.7	0.463	0.437	0.797	0.535	0.094	0.314	0.220	5.702
0:55:16	58.7	0.619	88.7	5.282	10,80	44.8921	44.9	0.466	0,439	0.799	0,538	0.095	0.316	0.221	5.669
0:55:45	58.7	0.625	88.7	5.277	10,90	44.9413	44.9	0.465	0.438	0.798	0.538	0.096	0.317	0.221	5,616
0:56:17	58.9			5.271	11.00		45.2	0.467	0.440	0.800	0.541	0.097	0.319	0.222	5.582
0:56:49	59.0			5.265	11.10		45.3	0.468	0.441	0.801	0.542	0.098	0.320	0.222	5,540
0:57:20	59,0			5.259	11.20		45.3		0.439	0.799	0.542	0.099	0.321	0.222	5,473
0:57:51	59.4			5,253	11.30		45.7		0.443	0.803	0.546	0.099	0.323	0.223	5.502
0:58:21	59.4			5.247	11.40		45,6		0.442	0.802	0.544	0.099	0.322	0.223	5,495
0:58:53	59.2			5,241	11.50		45,5		0.440	0.800	0.544	0.101	0.323	0.222	5.387
0:59:25	59.2			5.235	11.60		45,5		0.439	0.799	0.544	0.102	0.323	0.221	5.339
0:59:56	59.4			5.239			45.7	0.468	0.440	0.800	0.547	0.102	0.325	0.222	5.272
									0.440	0.800	0.549	0.104	0.327	0,222	5.194
1:00:28	59.5								0.440	0.800	0.551	0.100	0.330	0.221	5.058
1:01:00	59.5	0,684	88.5	5.217	11,90	45.4508	40./	0,408	0,439	V.(29	0.551	0.109	0.000	V.E.C.1	3,020

	Consolidation Valu	es	Final Val	ues	Tested By	KDG	Project Number	175569069
Height	5,922 (in.)	15.042 (cm)	Height	4.833 (in.)	Date	12-10-09	Test Number	CU-1A
Diameter	2.811 (in)	7.140 (cm)	Dia. avg.	3.258 (in)	Press No.	1	Data File ID	1A
Area	6,207 (in*)	40.043 (cm²)	Area avg.	8.335 (in ⁴)	Panel No.	C	Lateral Pressure (psl)	5.0
					_		Chamber Pressure - σ ₃ (psi)	90

Area	6.207	(in*)	40.043	(cm²)		Area avg.	8,335	(in^)		Panel No	C		Lateral Pr	essure (psl)	5,0
-						•	***************************************					Cha	amber Pressu	re - O ₃ (psi)	90
									0					•	C.65
		Deflection	Pore	0			Causatad	Cardalas	Corrected				p'	q	Effective
Clock		Dial	Pressure	Corrected	04	Corrected	Corrected	Deviator	Deviator		σ ₁ '	σ ₃ '	(o ₁ '+o ₃ ')/2	(σ ₁ -σ ₃)/2	Principal
Time	Load	Reading	Reading	Hieght	Strain		Load	Stress	Stress*	σ ₁					Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	(tsf)	(lsf)	(tsf)	(tsf)	(Isf)	(tsf)	(tsf)	σ_1' / σ_3'
1:01:31	59.5	0.690	88,4	5.212	12.00	45.5016	45.8	0,468	0.438	0.798	0.558	0.116	0.337	0.221	4,816
1:02:02	59.7	0,695	88.6	5.206	12.10	45.5530	45.9	0.469	0.439	0.799	0.545	0.102	0.324	0.222	5.324
1:02:35	59.9	0.702	88.6	5.200	12.20	45,6061	46.2	0.471	0.441	0.801	0.544	0.100	0.322	0.222	5.465
													0.320	0.222	5.508
1:03:04	59.9	0.707	88.6	5,194	12.30	45.6571	46.2	0.470	0.440	0.800	0.542	0.098			
1:03:35	60.2	0.713	88.6	5.188	12.40	45.7095	46.4	0.472	0.442	0.802	0.543	0.098	0.321	0.223	5.557
1:04:06	60.3	0.719	88.6	5.182	12.50	45.7631	46.6	0.474	0.443	0.803	0.545	0.098	0.321	0.223	5,553
1:04:37	60.3	0.725	88.6	5.176	12,60	45.8150	46.6	0.473	0.442	0.802	0.544	0.099	0.322	0.223	5.511
1:05:05	60.4	0.731	88.6	5,170	12.70	45.8660	46.7	0,473	0.442	0.802	0.545	0.100	0.323	0.223	5,465
							47.0	0.476	0,444	0.804	0.550	0.102	0.326	0.224	5,384
1:05:36	60.7	0.737	88.6	5.164	12.80	45.9210									
1:06:05	8,08	0.743	88.6	5.158	12.90	45.9732	47.0	0.476	0.444	0.804	0.550	0.103	0.326	0.224	5,364
1:06:34	60.8	0.749	88.6	5.152	13.00	46.0241	47.1	0,476	0.444	0.804	0.551	0.104	0.327	0.224	5.327
1:07:03	61.1	0.755	88.6	5.147	13,10	46.0770	47.4	0.478	0.446	0.806	0.553	0.104	0.329	0.225	5.332
1:07:34	61,3	0,761	88.5	5.141	13,20	46.1304	47.5	0.479	0.447	0,807	0.555	0.105	0.330	0.225	5.299
1:08:04	61,4	0,767	88.5	5.135	13,30	46.1838	47.7	0.480	0.448	0,808	0.557	0.106	0.332	0.226	5.262
													0.334	0.226	5.192
1:08:33	61,6	0.772	88.5	5.129	13.40	46.2369	47.9	0.481	0.448	0.808	0.560	0.108			
1:09:05	61.5	0.779	88.5	5.123	13,50	46.2923	47.8	0.480	0.447	0.807	0.559	0.108	0.333	0.225	5.178
1:09:36	61.7	0.785	88.5	5,117	13.60	46.3455	47.9	0.481	0.448	0.808	0.560	0.108	0.334	0.226	5,169
1:10:05	61.9	0.790	88.5	5.111	13.70	46.3986	48.2	0.483	0.449	0,809	0.563	0.110	0.336	0.227	5.130
1:10:35	62.2	0.796	88.5	5.105	13,80	46,4515	48.5	0.485	0.451	0,811	0.565	0.110	0.337	0.228	5.151
1:11:06	62.4	0.802	88.5	5.099	13.90	46.5066	48.7	0.487	0.453	0.813	0.568	0.111	0.340	0.228	5.097
														0.228	5.024
1:11:34	62.5	0.808	88.4	5.093	14.00	46.5590	48.8	0.488	0.453	0.813	0.571	0.114	0.342		
1:12:03	62.8	0.814	88.4	5.087	14.10	46.6138	49.1	0.490	0.455	0,815	0.576	0.117	0,346	0.229	4.934
1:12:33	62.8	0.820	88.3	5.081	14.20	46.6690	49.1	0.489	0.454	0.814	0.579	0.121	0.350	0.229	4.777
1:13:03	62.9	0.826	88.3	5.075	14.30	46.7225	49.2	0.489	0.454	0.814	0.578	0.120	0.349	0.229	4.820
1:13:32	63.3	0.832	88,5	5.069	14.40	46,7775	49.6	0.493	0.458	0.818	0.571	0.110	0.341	0.231	5.206
							49.8		0.459	0.819	0.570	0.107	0.339	0.231	5.308
1;14:02	63.5	0,838	88.5	5.064	14.50										
1:14:34	63.6	0.844	88.5	5.058	14.60	46,8874	49.9	0.494	0.459	0.819	0.570	0.108	0.339	0.231	5.300
1:15:06	63.6	0.850	88.5	5.052	14.70	46,9427	49.9	0.494	0.458	0.818	0.567	0.106	0.337	0.231	5.356
1:15:35	63.7	0.855	88.5	5.046	14.80	46.9971	50.0	0.494	0,458	0.818	0.568	0.106	0.337	0.231	5.344
1:16:06	63.7	0.861	88.5	5.040	14.90	47.0513	50.0	0.494	0.457	0.817	0.568	0.107	0.337	0.231	5.321
	63.9	0.867	88.5	5.034	15,00		50.1	0.495	0,458	0.818	0.571	0,110	0.341	0.231	5.212
1:16:38															5.193
1:17:07	64.1	0.873	88.5	5.028	15.10		50.4	0.497	0,460	0.820	0.574	0.111	0.342	0.232	
1:17:38	64.0	0.879	88.5	5.022	15,20	47.2177	50.3	0.496	0,458	0.818	0.573	0.111	0.342	0.231	5,156
1:18:11	63.9	0.885	88,4	5.016	15.29	47,2732	50.2	0.494	0,456	0.816	0.573	0.113	0.343	0.230	5.073
1:18:42	64.3	0.891	88,4	5.010	15.40	47,3299	50.6	0.497	0.459	0.819	0.577	0.114	0.345	0.232	5.080
1:19:13	64.6		88.4	5.004	15.50		50.8	0.499	0.461	0.821	0.579	0.114	0.347	0.232	5.066
				4,998	15.60		50.8	0.498	0.459	0.819	0.578	0.115	0.346	0.232	5.032
1:19:44	64.5		88.4												4.986
1:20:16	64.5	0.909	88.4	4,993	15.70		50.8	0.497	0.458	0.818	0.578	0.116	0.347	0.231	
1:20:48	64.7	0.915	88.4	4.986	15.80	47.5558	51.0	0.498	0.459	0.819	0.580	0.116	0.348	0.232	4.979
1:21:18	65,0	0.920	88.4	4.981	15.89	47.6105	51.3	0.501	0.462	0.822	0,583	0.117	0.350	0.233	4.988
1:21:52	65.0	0.927	88.4	4.975	16.00	47.6687	51.3	0.501	0.461	0.821	0.583	0.118	0.350	0.232	4.943
1:22:22	65.0	0.932	88.3	4.969	16.10	47,7245	51.3	0.500	0.460	0.820	0.584	0.120	0.352	0.232	4.866
1:22:54	65.2		88,3	4.963	16.20		51.5	0.501	0.461	0.821	0.587	0.122	0.355	0.233	4,800
1:23:26	65,2		88.2		16,30			0.500	0.460	0.820	0.590	0.126	0,358	0.232	4.679
1:23:58	65.3	0.950	88.2	4.951	16.40	47,8966	51.6	0.501	0.461	0.821	0.597	0.133	0.365	0.232	4.499
1:24:29	65.5	0.956	88.3	4.945	16.50	47,9541	51.8	0.502	0.461	0.821	0.586	0.121	0,353	0.233	4.854
1:25:00	65.5	0.962	88.4	4.939	16.60	48,0110	51.8	0.502	0.461	0.821	0.582	0.117	0,349	0.232	4.979
1:25:31	65.8			4,933	16.69		52.1	0,504	0.463	0.823	0.581	0,115	0.348	0.233	5.063
											0.579	0.115	0.347	0.232	5.033
1:26:00	65.7			4,927	16.79				0.460	0.820					
1:26:31	65.8	0.980	88.4	4.921	16.90			0.503	0.461	0.821	0.580	0,115	0.348	0.233	5.046
1:27:00	66.1	0.986	88.4	4.916	17.00	48.2423	52.3	0.504	0.463	0.823	0.581	0.115	0.348	0.233	5.065
1:27:30	66,0	0.992	88.4	4.910	17.09	48.2997	52.2	0.503	0.461	0.821	0.581	0.116	0.348	0.232	5.007
1:27:59	66,3				17.20				0.464	0.824	0.586	0.118	0.352	0.234	4.952
	66.4				17.30				0.464	0.824	0,587	0.119	0.353	0.234	4.922
1:28:29														0.234	4.888
1:28:58	66.5				17,40				0.463	0,823	0.587	0.120	0.354		
1;29:28	66.5	1,015	88,3	4.886	17.50				0.463	0.823	0.587	0.121	0.354	0.233	4,870
1:29:59	66.8	1.021	88.3	4.880	17,60	48.5936	53.1	0,508	0,465	0.825	0.589	0.120	0.354	0.234	4.908
1:30:30	66.7	1.027	88.3	4.874	17.70	48,6523	53.0	0,507	0.463	0.823	0.589	0.123	0.356	0.233	4.805
1:30:59	66.9				17.79				0.464	0.824	0.590	0.122	0.356	0.234	4.822
									0.464	0.824	0.592	0.124	0.358	0.234	4.774
1:31:30	67.1	1.039	88.3	4.862	17.90	48.7705	23.3	0.008	0.464	0.024	0.082	0.124	0.000	V.4.34	-T, 4 f "T

	Consolida	ition Values				Final V	'alues			Tested By	KDG		Pro	ject Number	175569069
Height	5.922	(in.)	15.042	(cm)		Height	4.833	(in.)		Date	12-10-09		1	fest Number	CU-1A
Diameter	2.811	(in)	7.140	(cm)		Dia. avg.	3,258	(in)		Press No.	1			Data File ID	1A
Area	6.207	(in*)	40.043	(cm²)		Area avg.	8.335	(in²)		Panel No.	С		Lateral Pr	essure (psi)	5.0
												Cha	amber Pressu	ие - О _З (psi)	90
Clock Time (min.)	Load (lbf)	Deflection Dial Reading (in.)	Pore Pressure Reading (psi)	Corrected Hieght (in.)	Strain (%)	Corrected Area (cm²)	Corrected Load (lbf)	Deviator Stress (tsf)	Corrected Deviator Stress* (tsf)	σ ₁ (Isf)	σ ₁ * (Isf)	σ ₃ ' (tsf)	p' (σ ₁ '+σ ₃ ')/2 (tsf)	q (o1-o3)/2 (tsf)	Effective Principal Stress Ratio σ ₁ ' / σ ₃ '
1:32:01	67.2	1.045	88.3	4,856	18.00	48.8303	53.5	0.509	0.465	0.825	0.590	0.121	0.355	0.235	4.887
1:32:30	67.4	1.051	88.3	4.850	18.09	48.8892	53.6	0.510	0.466	0.826	0.593	0.123	0.358	0.235	4.807
1:33:00	67.5	1.057	88.3	4,844	18.20	48.9496	53.8	0.511	0.466	0.826	0.594	0.124	0.359	0.235	4.781
1:33:29	67.9	1.063	88.3	4.839	18.30	49.0096	54.2	0.514	0.469	0.829	0.598	0.125	0.362	0.236	4.773
1:33:59	68,3	1.069	88.2	4,833	18,40	49.0698	54.6	0.517	0.472	0.832	0.603	0.127	0.365	0.238	4.741

Consolidation Values Final Values 6.046 (in.) 15,357 (cm) 4.933 (in.) Height Height Diameter 2.781 (in) 7.063 (cm) Dia. avg. 3.415 (in) 6.073 (in²) 39.181 (cm²) 9.159 (in²) Area Area avg.

 Tested By
 KDG
 Project Number
 175569069

 Date
 12-10-09
 Test Number
 CU-1B

 Press No.
 1
 Data File ID
 1B

 Panel No.
 B
 Lateral Pressure (psi)
 10.0

 Chamber Pressure - 02 (psi)
 90

•						•		•		-		Chi	amber Pressu	re - σ ₃ (psi)	90
			Pore						Corrected						Effective
		Deflection	Pressure	Corrected			Corrected		Deviator				p'	q	Principal
Clock Time		Dial Reading	*	Hieght	Strain	Corrected	Load	Deviator	Stress*	Ø1	σ ₁ *	σ ₃	(01'+03')/2	(σ ₁ -σ ₃)/2	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	Stress (tsf)	(tsf)	(Isf)	(tsf)	(tsf)	(tsf)	(lsf)	σ ₁ ' / σ ₃ '
0:00:00	12.8	-0.022	80.0	6.046	0.00	39.1808	0.0		0.000	0.720	0.720	0.717	0,718 0,747	0.002 0.042	1.005 1.120
0:00:49	19.7	-0.015	80.2	6.039	0.11	39.2234	6.9		0.081	0.801	0.789	0.704	0.747	0.155	1.510
0:01:25	38.8 46.5	-0.009 -0.003	81.5 82.5	6.034 6.028	0.20	39.2598 39.2997	26.0 32.7		0.307 0.386	1.027 1.106	0.919 0.927	0.609 0.538	0.733	0.195	1.724
0:01:57 0:02:30	50.4	0.003	83.1	6.022	0.40	39.3392	37.6		0.443	1.163	0.943	0.555	0.720	0.223	1.899
0:02:30	53.9	0.009	83.5	6.015	0.50	39.3794	41.1		0.484	1.204	0.955	0.468	0.712	0.244	2.041
0:03:32	56.7	0.015	83.8	6.009	0.61	39,4194	43.9		0.516	1.236	0.966	0.446	0.706	0.260	2.165
0:04:02	59.0	0.021	84.1	6.003	0.71	39,4595	46.2		0.543	1.263	0.975	0.428	0.702	0.273	2.276
0:04:33	61.4	0.027	84.2	5.997	0.80	39,4974	48.6		0.570	1.290	0.987	0.414	0.701	0.287	2.384
0:05:03	62.8	0.033	84.4	5.991	0.90	39,5375	50.0	0.588	0.585	1.305	0.994	0.405	0.699	0.294	2.455
0:05:35	64.6	0.039	84.5	5.985	1.00	39,5785	51.8	0.608	0.606	1.326	1.004	0.395	0.700	0.304	2,540
0:06:05	66.1	0.045	84.6	5.979	1.10	39,6171	53.3	0.626	0.623	1.343	1.013	0.387	0.700	0.313	2.617
0:06:37	67.5	0.051	84.7	5,973	1,21	39.6598	54,7	0.641	0.638	1.358	1.020	0.379	0.700	0.321	2.692
0:07:08	68.9		84.8	5.967	1,30	39.6978	56.1		0.653	1,373	1.029	0.373	0.701	0.328	2.763
0:07:40	69.9		84.9	5.961	1.40	39.7389	57.1		0.665	1.385	1.035	0.366	0.700	0.334	2.826
0:08:09	70.6		85.0	5,955	1.50	39.7782	57.8		0.672	1.392	1.037	0.362	0.700	0.338	2.867
0:08:40	71.7	0.075	85.0	5.949	1.60	39.8192	58.9		0.684	1.404	1.047	0.359	0.703	0.344	2.913
0:09:12	72.8		85.1	5.943	1.71	39.8605	60.0		0.695	1.415	1.053	0.355	0.704 0.704	0.349 0.353	2,969 3.010
0:09:43	73,5		85.1	5.937	1.81	39.9012	60.7		0.703	1.423	1.057	0.351	0.704	0.355	3.039
0:10:14	74.0		85.2 85,2	5.931 5.925	1.90	39.9409 39.9834	61.2 62.2		0.707 0.718	1.427 1.438	1.059 1.067	0.349 0.346	0.706	0.361	3.088
0:10:47 0:11:17	75.0 75.8		85.2	5.925	2.01 2.10	40.0220	63.0		0.716	1.436	1.074	0.344	0.709	0.365	3.120
0:11:49	76.4	0,103	85.2	5.913	2.20	40.0629	63.6		0.733	1.453	1.082	0.346	0.714	0.368	3.131
0:12:19	77.0		85.2	5.907	2.30		64.2		0.739	1.459	1.090	0.348	0.719	0.371	3.135
0:12:50	77.5		85.1	5.900	2.41	40.1466	64.7		0.744	1,464	1.100	0.353	0.727	0.374	3.116
0:13:22	78.2		85.3	5.895	2.50		65.4		0.751	1.471	1.090	0.335	0.713	0.377	3.249
0:13:54	78.5		85.4	5.888	2.60	40.2281	65.7	0.759	0.753	1.473	1.084	0.328	0.706	0.378	3.304
0:14:24	79.2	0.142	85.5	5.882	2.70	40.2694	66.4	0.767	0.760	1.480	1.087	0.323	0.705	0.382	3,363
0:14:57	79.8	0.148	85.6	5.876	2.81	40.3126	67.0	0.773	0.766	1.486	1.089	0.319	0.704	0.385	3.408
0:15:28	80.4	0.154	85.6	5.870	2.91	40.3531	67.6	0.779	0.772	1.492	1.092	0.317	0.705	0.387	3.443
0:15:58	80.5	0.160	85.6	5.864	3.00	40.3938	67.7	0.780	0.772	1.492	1.092	0.317	0.704	0.388	3,451
0:16:32	81.2		85.6	5.858	3.11	40.4370	68.4		0.779	1.499	1.100	0.318	0.709	0.391	3,463
0:17:04	81.6		85.6	5,852	3.21	40.4790	68.8		0.782	1.502	1.104	0.319	0.711	0.393	3.466
0:17:36	81.8		85.6	5,846	3.30		69.0		0.784	1.504	1,107	0.320	0.713	0.394	3.462
0:18:08	82.1		85.6	5,840	3.40		69.3		0.786	1.506	1,109	0.320	0.714 0.717	0.394 0.397	3.469 3.477
0:18:40	82.5		85.6 85.5	5,834 5,828	3.51	40.6048 40.6460	69.7 70.1		0,790 0,793	1.510	1.114	0.320	0.717	0.398	3.485
0:19:12 0:19:44	82.9 83.4		85,5	5.822	3.60 3.70		70.1		0.798	1.513 1.518	1.117 1.125	0.324	0.725	0.401	3.473
0:20:16	83.7		85,5	5.816	3.81	40.7313	70.9		0.800	1.520	1,128	0.325	0.726	0.402	3,474
0:20:47	84.3		85.5	5.810	3.90		71,5		0,806	1.526	1,136	0.326	0.731	0.405	3.480
0:21:19	84.7		85.5	5,804	4.01	40.8160	71.9		0.809	1.529	1,136	0.324	0.730	0.406	3,508
0:21:49			85.4	5.798	4.11	40.8591	72.2		0.812	1.532	1.148	0,333	0.741	0.408	3.448
0:22:19	85.5	0.233	85.3	5,792	4.21	40.9008	72.7	0.826	0.816	1.536	1,158	0.338	0.748	0.410	3.421
0:22:50	85.8	0.239	85,4	5,786	4.30	40.9429	73.0	0.829	0.818	1.538	1.156	0.334	0.745	0.411	3.459
0:23:22	86.4	0.245	85,5	5.779	4,41	40.9875	73.6	0.835	0.824	1.544	1,149	0.322	0.735	0.413	3.569
0:23:50	86.6	0.251	85,6	5.774	4.50	41.0291	73.8	0.836	0.825	1.545	1,147	0.319	0.733	0,414	3.601
0:24:22		0.257	85.6	5.767	4.61	41.0723	74.3	0.841	0.829	1.549	1,147	0.315	0.731	0,416	3,646
0:24:53		0.263	85.6	5.761	4.71		74.6	0.844	0.833	1.553	1,150	0,314	0.732	0.418	3.666
0:25:23				5.755	4.81		75.0		0.836	1,556	1,153	0.314	0.733	0.419	3,675
0:25:53			85,6	5.749	4.91	41,2019	75.6		0.840	1.560	1,159	0.315	0.737	0.422	3.682
0:26:24	88.8		85.6	5.743	5,00		76.0		0.845	1,565	1,167	0.319	0.743 0.744	0.424 0.426	3,661 3,678
0:26:56			85.6	5.737	5.11		76.5		0.849	1.569	1,171	0.318 0.322	0.744	0.428	3.657
0:27:25 0:27:57				5.731 5.725	5.20 5.31		76.9 77.2		0.852 0.854	1.572 1.574	1.177 1.193	0.322	0.765	0.429	3.553
0:27:57				5.719	5.41		77.3		0.854	1.574	1.187	0.330	0.758	0.429	3.600
0:29:00			85.5	5.713	5,51		77.8		0.858	1.578	1.189	0.327	0.758	0.431	3.633
0:29:31	90.8		85.4	5.707	5.61		78.0		0.860	1,580	1,195	0.331	0.763	0.432	3,605
0:30:02				5.701	5.71		78.2		0,861	1.581	1.199	0.335	0.767	0.432	3.581
0:30:32				5.695	5.80		78.7		0.865	1.585	1.205	0.337	0.771	0.434	3.579
0:31:03	91.5	0,335	85.3	5.689	5.90	41.6394	78.7	0.879	0.864	1.584	1.208	0.341	0.775	0.434	3.542

Consolidation Values Final Values Height 6.046 (in.) 15.357 (cm) Height 4.933 (in.) Diameler 2.781 (in) 7.063 (cm) Dia. avg. 3.415 (in) 6.073 (in⁴) 39,181 (cm²) 9.159 (in⁴) Area Area avg.

Tested By KDG

Date 12-10-09

Press No. 1

Panel No. B

 Project Number
 175569069

 Test Number
 CU-18

 Data File ID
 18

 Lateral Pressure (psi)
 10.0

 amber Pressure - 0°2 (psi)
 90

		•						• '				Cha	amber Pressu	re - σ ₃ (psi)	90
			Pore						Corrected					•	E (In alive
		Deflection	Pressure	Corrected			Corrected		Deviator				þ,	q	Effective Principal
Clock Time	Load	Dial Reading	Reading	Hieght	Strain	Corrected	Load	Deviator	Stress*	σ_1	σ_1	σ_3	(\sigma_1'+\sigma_3')/2	(a ₁ -a ₃)/2	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	Stress (Isf)	(lsf)	(Isf)	(lsf)	(Isf)	(lsf)	(tsf)	σ_1'/σ_3'
0:31:35	91.8	0.342	85.2	5.683	6.01	41.6850	79.0	0.881	0.866	1.586	1.219	0.349	0.784	0.435	3.494
0:32:07	92.2	0.347	85.0	5.677	6.10	41.7282	79.4		0.870	1.590	1.230	0.357	0.794	0.437	3.446
0:32:39	92.4	0.354	85.3	6.671	6.21	41.7732	79.6		0.870	1.590	1.210	0.336	0.773	0.437	3.601
0:33:11	92.4	0.360	85.4	5.665	6.31	41.8185	79.6		0.870	1.590	1.208	0.334	0.771	0.437	3.611
0:33:43	93.0	0.366	85.4	5.659	6.41	41.8627	80.2		0.875	1.595	1,211	0.332	0.772	0.439	3.644
0:34:14	93.3	0.372	85.3	5.653	6.51	41.9072	80.5		0.877	1.597	1,215	0.335	0.775	0.440	3.629
0:34:46	93.5	0.378	85.4	5.647	6.61	41.9520	80.7		0.878	1.598	1.215	0.333	0.774	0.441	3.646
0:35:18	93.8	0.384	85.4	5.640	6.71	41.9973	81.0		0.880	1.600	1.218	0,334	0.776	0.442	3.644
													0.783	0.445	3.632
0:35:49	94.5	0.390	85.3	5.634	6.80		81.7		0.886	1.606	1.228	0.338	0.785	0.444	3.610
0:36:21	94.5	0.396	85.3	5.628	6.91	42.0875	81.7		0.885	1.605	1.229	0.340	0.788	0.446	3.605
0:36:53	94.9	0.402	85.2	5.622	7.01	42.1330	82.1	0.906	0.888	1.608	1.234	0.342	0.791	0.447	3.596
0:37:24	95.1	0.408	85.2	5.616	7.11	42.1783	82.3		0.890	1.610	1.238	0.344	0.794	0.448	3.592
0:37:56	95.5	0.414	85.2	5.610	7.21	42.2245	82.7		0.892	1.612	1.242	0.346			
0:38:28	95.6	0.420	85.2	5.604	7.31	42.2688	82.8		0.893	1.613	1.245	0.348	0.796	0.448	3.573
0:39:00	95.8	0.426	85.1	5.598	7.41	42.3142	83.0		0.894	1,614	1.248	0.351	0.799	0.449	3.559
0:39:32	96,0	0.432	85,1	5.592	7,51	42,3605	83.2		0.894	1.614	1.251	0.353	0.802	0.449	3.545
0:40:05	96,3	0.438	85.1	5.586	7.61	42.4075	83.5		0.897	1.617	1.254	0.354	0.804	0.450	3.541
0:40:37	96.7	0.444	85.1	5.580	7.71	42.4538	83.9		0.900	1.620	1.259	0.356	0.808	0.452	3.538
0:41:09	96.9	0.450	85.0	5.574	7.81	42.4992	84.1	0.920	0.901	1.621	1.263	0.359	0.811	0.452	3.518
0:41:40	97.4	0.456	84.9	5,568	7.91	42.5443	84.6	0.925	0.905	1.625	1.272	0.364	0.818	0.454	3.494
0:42:12	97.8	0.462	84.9	5,562	8.01	42.5905	85.0	0.928	0.908	1.628	1.281	0.370	0.825	0.455	3.465
0:42:44	98.0	0.469	84.7	5,556	8.11	42.6386	85.2	0.929	0.909	1.629	1.292	0.379	0.836	0.456	3.404
0:43:14	98.2	0.475	85.0	5.550	8.21	42.6848	85.4	0.930	0.910	1.630	1.275	0.362	0.819	0.457	3.524
0:43:44	98,6	0.481	85,0	5.544	8.31	42,7299	85.8	0.933	0.913	1.633	1.274	0.358	0.816	0.458	3.558
0:44:16	98.8	0.487	85.1	5,537	8.41	42,7786	86,0	0.934	0.914	1.634	1.273	0.356	0.815	0.458	3.573
0:44:47	99.2	0.493	85.1	5,531	8.51	42.8247	86.4	0.938	0.917	1,637	1.274	0.354	0.814	0.460	3,601
0:45:16	99.5	0.499	85,1	5.525	8.61	42,8709	86.7	0.941	0.919	1.639	1.276	0.354	0.815	0.461	3.606
0:45:47	100.0	0.505	85.1	5,519	8.71	42.9184	87,2	0.945	0.923	1.643	1.281	0.354	0.818	0.463	3.615
0:46:18	100.5	0.511	85.0	5.513	8.81	42.9657	87.7	0.949	0.927	1.647	1.288	0.357	0.822	0.465	3.604
0:46:47	100.3	0.517	85.0	5.507	8.91	43.0126	87.5		0.924	1.644	1.290	0.363	0.826	0.464	3.558
0:47:17	100.8	0.523	84.9	5.501	9.01	43.0592	88.0		0.928	1.648	1.297	0.365	0.831	0.466	3.554
0:47:49	101.0	0.529	84.9	5.495	9.11	43.1070	88.2		0.929	1.649	1.297	0.365	0.831	0.466	3.551
0:48:20	101.1	0.535	84.9	5.489	9.21	43.1538	88.3		0.928	1.648	1.300	0.369	0.835	0.466	3.526
0:48:52	101.5	0,541	84.8	5,483	9.31	43.2026	88.7		0.931	1.651	1.305	0.371	0.838	0.467	3.520
0:49:22	101.5	0.547	84.8	5.477	9.41	43.2498	88.7		0.930	1.650	1.306	0.373	0.840	0.467	3,501
0:49:54	101.7	0.553	84.8	5.471	9.51	43.2982	88.9		0.932	1.652	1.310	0.375	0.843	0.467	3.491
0:50:25	101.8	0.559	84.8	5.465	9.61	43.3458	89.0		0.930	1.650	1.311	0.377	0.844	0.467	3.475
0:50:56	102.0	0.565	84.7	5.459	9.71	43.3945	89.2		0.932	1.652	1.314	0.378	0.846	0.468	3.474
0:51:27	102.6	0.571	84.7	5.453	9.81	43.4416	89.8		0.936	1.656	1.321	0.381	0.851	0.470	3.467
0:51:59	102.7	0.577	84.7	5.447	9.91	43.4903	89.9		0.937	1.657	1.324	0.384	0.854	0.470	3.449
0:52:28	102.9	0.583	84.6	5.441	10.01	43.5376	90.1		0.937	1.657	1.327	0.386	0.856	0.470	3.436
0:52:59	103.2	0.563	84.6	5.435	10.01	43.5866	90.4		0.937	1.660	1.332	0.389	0.861	0.470	3.421
					10,11		90.4						0.868	0.472	3.382
0:53:32		0.596	84.5	5.429		43.6361			0,940	1,660	1,340	0.396			
0:54:04	103.6	0.602	84,4	5.423	10,31		90.8		0,941	1,661	1.347	0.403	0.875	0.472 0.474	3.340 3.447
0:54:35		0.608	84.6	5.417	10,41		91.2		0,944	1,664	1.335	0.387	0.861		
0:55:07	104.2	0.614	84.7	5.411	10.51		91.4		0.945	1,665	1.332	0.384	0.858	0.474	3.470
0:55:39		0.620	84.7	5.404	10.61		92.1		0.950	1.670	1.337	0.383	0.860	0.477	3.487
0:56:10		0.626	84.7	5,398	10.71		91.8		0.946	1,666	1.334	0.384	0.859	0.475	3.474
0:56:42		0.632	84.7	5,392	10.81		92.1		0.948	1,668	1.337	0.385	0.861	0.476	3.472
0:57:14	105.5	0.638	84,6	5,386	10.91		92.7		0.953	1,673	1.342	0.386	0.864	0.478	3.479
0:57:44	105.9	0,644	84,6	5,380	11,01		93.1		0,955	1,675	1.348	0.389	0.869	0.479	3.462
0:58:16		0,650	84.5	5,374	11.11	44.0776	93.2		0,956	1.676	1.352	0.393	0.872	0.479	3,440
0:58:48		0.656	84.5	5.368	11.21		93.3		0.955	1.675	1.353	0.395	0.874	0.479	3,426
0:59:20		0.662	84.5	5.362	11.31		93.7		0.959	1.679	1.358	0.396	0.877	0.481	3,429
0:59:52	106.5	0.668	84.5	5.356	11.41		93.7		0.956	1.676	1.359	0.399	0.879	0,480	3.403
1:00:24	106.7	0.674	84.4	5,350	11.51	44,2769	93,9	0.986	0.957	1.677	1.362	0.401	0.882	0.480	3,393
1:00:56	106.9	0.680	84.4	5.344	11.61	44,3265	94.1	0.987	0.958	1.678	1.365	0.403	0.884	0.481	3,387
1:01:30	107.2	0.686	84.4	5,338	11.71	44.3780	94.4	0.990	0.961	1.681	1.369	0.405	0.887	0.482	3.379
1:02:02	107.2	0.692	84.3	5,332	11,81	44,4282	94.4	0.988	0.958	1.678	1.369	0.407	0.888	0.481	3.363
1:02:34	107.4	0.699	84.3	5,326	11,91	44.4787	94.6	0.989	0.959	1.679	1.373	0.410	0.892	0.481	3.344

Final Values Consolidation Values 6.046 (in.) 15.357 (cm) Height 4.933 (in.) Height Dia. avg. 3.415 (in) 2.781 (in) 7,063 (cm) Diameter 9.159 (in*) 6.073 (in⁴) 39.181 (cm²) Area avg. Area

 Tested By
 KDG

 Date
 12-10-09

 Press No.
 1

 Panel No.
 B

Project Number 175569069
Test Number CU-1B
Data File ID 1B
Lateral Pressure (psi) 10.0

per Pressure - (7.4/psi) 90

						-		•		-		Cha	amber Pressu	re - σ_3 (psi)	90
			Pore						Corrected						Effective
		Deflection	Pressure	Corrected			Corrected		Deviator				p'	q	Principal
Clock Time	Load	Dial Reading		Hieght	Strain	Corrected	Load	Deviator	Stress*	σ_1	α^{i} ,	σ_3	$(\sigma_1' + \sigma_3')/2$	(01-03)/2	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	Stress (tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	σ, /σ,
1;03:04	107.9	0.704	84.3	5.320	12.01	44.5287	95.1	0.993	0.963	1.683	1.378	0.412	0.895	0.483	3.348
1:03:36	108.2	0.711	84.2	5.314	12.11	44.5796	95.4	0.995	0.965	1.685	1.389	0.421	0.905	0.484	3.302
1:04:07	108.3	0.717	84.2	5.308	12.21	44,6297	95.5	0.995	0.964	1.684	1.388	0.421	0,905	0.484	3.299
1:04:37	108.5	0.723	84.1	5.302	12.31	44.6803	95,7		0.965	1,685	1,396	0.428	0.912	0.484	3.264
1:05:09	108,9	0.729	84.1	5,296	12.41	44.7327	96,1	0.999	0.968	1.688	1.397	0.426	0.912	0.486	3.278
1:05:40	109.2	0.735	84.3	5,290	12.51	44.7834	96,4		0.970	1,690	1.386	0.413	0.900	0.487	3.358
1:06:10		0.741	84.3	5.283	12.61	44.8355	96,4		0.969	1.689	1,383	0.411	0.897	0.486	3.367
1:06:40		0.747	84.3	5.277	12.71	44.8861	96.9		0.972	1.692	1,384	0.409	0.897	0.488	3.385
1:07:11		0.753	84,3	5.271	12.81	44,9379	97.4		0.976	1,696	1,388	0.408	0.898	0.490	3.398
1:07:41		0.759	84.3	5.265	12.91	44,9903	97.4		0.975	1,695	1,388	0.410	0.899	0.489	3.387
1:08:11		0.765	84.3	5.259	13.01	45.0415	98.0		0.979	1,699	1.392	0.410	0.901	0.491	3.397 3.366
1:08:42		0.771	84.2	5.253	13.11	45.0933	98.0		0.978	1,698	1.396	0.415	0.905 0.910	0.491 0.493	3.363
1:09:12		0.777	84.2	5.247	13.21	45.1460	98.6		0.983	1,703	1.403 1.404	0.417 0.419	0.910	0.493	3,350
1:09:42		0.783	84.2	5.241	13.31	45.1968	98.6		0.981 0.981	1,701 1,701	1.404	0.419	0,911	0.492	3.335
1:10:14		0.789	84.1	5.236	13.41	45.2493	98.7		0.984	1.701	1,411	0,421	0,914	0.494	3.336
1:10:46		0.795	84.1	5,229	13.51	45.3025 45.3549	99.2 99.6		0.984	1.704	1.415	0,425	0.920	0,495	3.330
1:11:17		0.801	84.1	5,223	13.61 13.71	45.4063	99.6		0.986	1.707	1.415	0.427	0.920	0,495	3.316
1:11:46		0.807 0.813	84.1 84.0	5.217 5.211	13,81	45.4589	99.9		0.988	1.708	1.420	0.429	0.924	0,495	3.311
1:12:17 1:12:48		0.819	84.0	5.205	13.91	45.5117	100.0		0.987	1,707	1,421	0.430	0.926	0.495	3.302
1:13:19			84.0	5,199	14.01	45.5647	100.0		0.986	1.706	1.423	0.433	0.928	0.495	3.284
1:13:51		0.832	84.0	5.193	14.11	45.6183	100.3		0.987	1.707	1,425	0.434	0.930	0.495	3.281
1:14:23		0.838	83.9	5.187	14.21		100.6		0.989	1.709	1.430	0.438	0.934	0.496	3.266
1:14:53			83.9	5.181	14.31		100.8		0.989	1.709	1.434	0.442	0.938	0.496	3.248
1:15:25			83.8	5.174	14.41		100.7		0.987	1.707	1.438	0.448	0,943	0.495	3,211
1:15:56		0.856		5.168	14.51	45.8325	101.3		0.992	1.712	1.449	0.454	0.951	0.498	3,194
1:16:27				5.163	14.61		101.8		0.995	1.715	1.452	0.453	0.953	0.499	3.202
1:16:59				5.156	14.71		101.5		0.991	1.711	1,435	0.441	0.938	0.497	3.255
1:17:30			83.9	5.150	14.81		102.3		0.998	1.718	1,437	0.436	0.937	0.500	3.294
1:18:02			83.9	5,144	14.91	46.0475	102.3	1.033	0.996	1.716	1.435	0.436	0.936	0.500	3.294
1:18:3			84.0	5.138	15.01	46.1018	102.5	1.034	0.997	1.717	1.435	0.435	0.935	0.500	3.299
1:19:04				5,132	15.11	46.1555	102.7	1.035	0.998	1.718	1.437	0.436	0.937	0.500	3.295
1:19:3		0.898	83.9	5.126	15.21	46.2100	102.9	1.035	0.998	1.718	1.437	0.436	0.937	0.500	3.296
1:20:08		0.904	83.9	5.120	15.31	46.2662	103.5	1.040	1.002	1.722	1.446	0.440	0.943	0.503	3.283
1:20:40	116.4	0.910	83.8	5.114	15.41	46.3211	103.6	1.040	1.002	1.722	1.449	0.444	0.946	0.502	3.265
1:21:1	1 116.2	0.916	83.8	5.108	15.51	46.3744	103.4	1.037	0.999	1.719	1.449	0.447	0.948	0.501	3,241
1:21:44	4 116.5	0.922	83.8	5.102	15.61	46.4298	103.7	1.038	0.999	1.719	1.451	0.448	0.949	0.501	3.238
1:22:16	5 116.9	0.928	83.8	5.096	15,71	46.4846	104.1	1.042	1.003	1.723	1.456	0.450	0.953	0.503	3.236
1:22:50	0 116.9	0.934	83.7	5.090	15.81	46.5400	104,1	1.040	1.001	1.721	1.456	0.451	0.954	0.502	3.225
1:23:2	1 117.1	0.940	83.7	5.084	15.91		104.3		1.001	1.721	1.458	0,453	0.955	0.502	3.219
1:23:5	4 117.4	0.947	83.7	5.078	16.01		104.6		1.003	1.723	1.461	0.456	0,958	0.503	3.208
1:24:20	6 117.8			5,072	16.11		105.0		1.006	1.726	1.467	0.458	0.962	0.504	3.205
1:24:5	6 118.0		•	5.066	16.21		105.2		1.006	1.726	1.468	0.459	0.964	0.505	3.198
1:25:2				5,060	16.31		105.6		1.008	1.728	1.474	0.462	0.968	0.506	3,191
1:25:5				5.053	16.41		106.0		1,011	1.731	1.479	0.465	0.972	0.507	3.181
1:26:3				5.047	16.51		106.0		1,009	1.729	1.492	0.479	0.985	0.506	3,113
1:27:0				5.041	16.61		106.1		1.009	1.729	1.490	0.478	0.984	0.506	3.120
1;27:3				5.035	16.71		106.4		1.010	1.730	1.498	0.484	0.991	0.507	3.096
1:28:0				5.029	16,81		106.9		1.013	1.733	1.480	0.464	0.972	0.508	3,193
1:28:3				5.023	16.92		107.		1.014	1.734	1.478	0.460	0,969 0,968	0.509 0.508	3.210 3.208
1:29:0				5.017	17.01		107,		1.012	1.732 1.733	1.475 1.475	0.460 0.458	0.967	0.508	3.218
1:29:3				5,011°			107.3		1,013			0.458	0.966	0.509	3.223
1:30:0				5.005	17.21		107.5		1,014	1.734	1.475 1.476	0.458	0.967	0.509	3.223
1:30:3				4.999	17.32		107.1		1,014 1,016	1.734 1.736	1.476	0,456	0.972	0.510	3.205
1:31:0				4.993	17.41		108.: 108.:		1.016	1.736	1.484	0,462	0.974	0.510	3.195
1:31:3				4.987	17.51 17.61		108.		1.015	1.735	1.486	0,468	0,977	0.509	3,179
1:32:0				4.981 4.975					1.018	1.738	1.492	0,470	0,981	0.511	3.174
1:32:3				4.975			109.		1.020	1.740	1.493	0,470	0.981	0.512	3.179
1:33:0 1:33:3				4.963					1.022	1.742	1.498	0.472	0.985	0.513	3,172
1;33:3	· (22.3	1.001	00.4	4.500	17.3	77.7010	100.	, 1,007		12		41114			

Revision Date: 1-2008

	Consolidation Valu	ies	Final Va	lues	Tested By	KDG	Project Number	175569069
Height	6.046 (in.)	15.357 (cm)	Height	4.933 (in.)	Date	12-10-09	Test Number	CU-1B
Diameter	2.781 (in)	7.063 (cm)	Dia, avg.	3,415 (in)	Press No.	1	Data File ID	1B
Area	6.073 (in ^e)	39.181 (cm²)	Area avg.	9.159 (in ²)	Panel No.	В	Lateral Pressure (psi)	10.0
							Chamber Pressure - σ_3 (psi)	90

Clock Tim (min.)	e Load (lbf)	Deflection Dial Reading (In.)	Pore Pressure Reading (psi)	Corrected Hieght (in.)	Strain (%)	Corrected Area (cm²)	Corrected Load (lbf)	Deviator Stress (Isf)	Corrected Deviator Stress* (Isf)	σ ₁ (tsf)	σ ₁ ' (tsf)	σ ₃ ' (tsf)	p' (σ ₁ '+σ ₃ ')/2 (Isf)	q (σ ₁ -σ ₃)/2 (lsf)	Effective Principal Stress Ratio o ₁ '/o ₃ '
1:34:0	9 122.0	1,068	83.4	4.957	18.02	47.7908	109.2	1.063	1.018	1.738	1.497	0.475	0.986	0.511	3.150
1:34:3	8 122.4	1.074	83.4	4.951	18.11	47.8483	109.6	1.065	1.020	1.740	1.500	0.476	0.988	0.512	3.150
1:35:1	0 122.8	1.080	83.4	4.945	18.21	47.9067	110.0	1.067	1.022	1.742	1.504	0.479	0.991	0.513	3.143
1:35:4	2 122.8	1.086	83,3	4.939	18.31	47.9651	110.0	1.066	1.021	1.741	1.503	0.479	0.991	0.512	3.138
1:36:1	3 122.9	1.092	83.3	4 933	18 41	48 0245	110 1	1 067	1 021	1.741	1.505	0.481	0.993	0.512	3.128

Consolidation Values Final Values Height 5,914 (in.) 15.020 (cm) Height 4.826 (In.) Dia. avg. Diameter 2.786 (in) 7.076 (cm) 3.271 (in) 8.401 (in⁴) 6.095 (in^e) 39.324 (cm⁴) Area Area avg.

Tested By KDG Date 12-9-09 1 Press No. Panel No.

Project Number __175569069 Test Number CU-1C Data File ID 1C Lateral Pressure (psi) 20.0

Area	0.093		39.324	(GITT)		Alea avg.	0,401	(41.)		ranen 140.				essure (bsi)	20,0
												Cha	amber Pressu	ire - σ_3 (psi)	90
			Pore						Corrected						Effective
		Deflection	Pressure	Corrected			Corrected		Deviator				p'	q	Principal
Clock Time	Load	Dial Reading	Reading	Hieght	Strain	Corrected	Load	Deviator	Stress*	σ_i	σ_1	α^3 ,	$(\sigma_1 + \sigma_3)/2$	$(\sigma_1 - \sigma_3)/2$	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	Stress (tsf)	(lsf)	(Isf)	(lsf)	(Isf)	(tsf)	(tsf)	σ_1' / σ_3'
0:00:00	13.2	-0.021	70.1	5.914	0.00	39,3240	0.0	0.000	0.000	1,440	1,440	1,435	1.437	0,003	1.004
0:05:56	24.9	-0.015	70.9	5.908	0.10	39,3636	11.7	0,138	0,138	1,578	1,515	1.372	1,444	0.072	1.104
0:11:34	60.7	+0.009	74.5	5.902	0.20	39,4032	47.5		0.560	2.000	1.682	1.116	1.399	0.283	1.507
					0.30	39,4427							1.392	0.362	1.704
0:16:20	74.3	-0.003	75.7	5.896			61.1	0.720	0.720	2.160	1.754	1.029	1.363	0.416	1.878
0:21:07	83.5	0.003	76.8	5.890	0.40	39.4827	70.3		0.826	2.266	1.779	0.947			
0:25:46	91.2	0.009	77.5	5.884	0.50	39.5216	77.9		0.916	2,356	1.824	0.903	1,363	0.460	2.020
0:30:33	97.6	0.015	78.2	5.878	0.60	39,5613	84.4	0.992	0.991	2.431	1.849	0.853	1.351	0.498	2.168
0:35:16	103.1	0.021	78.5	5.872	0.70	39,6013	89.9	1.056	1.054	2.494	1.888	0.829	1.358	0.530	2.278
0:39:50	108.0	0.027	78.6	5.866	0.80	39.6429	94.8	1,112	1,110	2.550	1.938	0.823	1.381	0.558	2.356
0:44:19	112.7	0.033	79.2	5.860	0.90	39,6810	99.5	1,166	1,164	2,604	1,949	0.780	1.364	0.585	2.500
0:49:03	116.9	0.039	79.1	5.854	1.00	39,7213	103.7	1,214	1,212	2.652	2.003	0.786	1.394	0.608	2.548
0:53:47	120.9	0.045	79.6	5.849	1.10	39,7614	107.7	1,260	1,257	2.697	2.011	0.749	1.380	0.631	2.686
0:58:31	124.5		79.5	5.843	1.20	39.8015	111.2		1.297	2.737	2.060	0.758	1,409	0.651	2.718
			79,9	5.837	1.30	39.8419	115.1	1,343	1.340	2.780	2.069	0.724	1,397	0.673	2.858
1:03:14	128.3												1,430	0.692	2.874
1:07:57	131.7	0.062	79,7	5.831	1.40	39.8821	118.5		1.379	2.819	2.122	0.738			
1:12:43	134.8		80,0	5.825	1.50	39.9229	121.6		1.413	2.853	2.135	0.717	1.426	0.709	2.978
1:17:27	138.2	0.074	79.9	5.819	1.60	39.9638	125.0	1.454	1.450	2.890	2.185	0.730	1.457	0.728	2.995
1:22:10	141.2	0.080	80.1	5.813	1.70	40.0036	127.9	1.487	1.483	2.923	2.203	0.715	1.459	0.744	3.081
1:26:51	144.1	0.086	80.0	5.807	1,80	40.0449	130.9	1.520	1.516	2.956	2.244	0.723	1.483	0.760	3,104
1:31:36	147.1	0.092	80.0	5.801	1.90	40.0853	133.8	1.553	1.548	2.988	2.276	0.723	1.500	0.777	3,148
1:36:25		0.098	79.9	5.795	2.00	40.1262	136.9	1.586	1.581	3.021	2.311	0.725	1.518	0.793	3.189
1:41:05		0.104	79.3	5.789	2.10	40.1672	139.9		1.614	3.054	2.389	0.770	1.580	0.810	3.103
1:45:54	156.0		79.9	5.784	2.20	40.2082	142.8		1,646	3.086	2.378	0.726	1.552	0.826	3.274
	158.3		79.6	5.778	2.30	40.2493	145.1		1.671	3.111	2.427	0.750	1,589	0.838	3.234
1:50:24													1.580	0.853	3,346
1:54:59		0.121	79.9	5,772	2.40	40.2910	147.9		1.701	3.141	2.433	0.727			
1:59:40			79.6	5,766	2,50	40.3319	150.8		1.733	3.173	2.486	0.748	1.617	0.869	3.324
2:04:19	166.5	0.133	79,8	5.760	2.60	40.3733	153.3	1.765	1.759	3.199	2.499	0.735	1.617	0.882	3.399
2:08:55	169.1	0.139	79.5	5,754	2.70	40.4147	155.9	1.793	1.787	3.227	2.548	0.756	1.652	0.898	3.370
2:13:27	171.6	0.145	79.6	5.748	2.80	40.4561	158.3	1.819	1.812	3.252	2.568	0.750	1.659	0.909	3.423
2:18:10	173.9	0.151	79.3	5.742	2.90	40.4982	160.7	1.845	1.838	3.278	2.611	0.768	1.690	0.921	3.398
2:22:41	176.3		79.2	5.736	3.00	40.5398	163.1	1,871	1.864	3.304	2.643	0.774	1.709	0.934	3.413
2:27:15			79.2	5,730	3.10	40.5815	165,9		1.894	3.334	2.675	0.776	1.725	0.950	3.447
2:31:54	181.0		78.3	5.724	3.20	40.6232	167,7	1.920	1.912	3.352	2.759	0,842	1.801	0.959	3.277
				5.718		40.6656	170.0		1.936	3.376	2.732	0.791	1.761	0.970	3.455
2:36:35			79.0		3.30								1.801	0.981	3.393
2:41:28			78.6	5.713	3.40	40.7073	172,1		1.958	3.398	2.783	0.820			3.471
2:46:24			78.8	5,707	3.50	40.7495	174,9		1.987	3.427	2.798	0,806	1.802	0.996	
2:51:22		0.192	78.4	5.701	3.60	40.7916	176,9		2.007	3.447	2.846	0.833	1.839	1.006	3.415
2:56:01	192.5	0.198	78.7	5,695	3.70	40,8341	179,3	2,041	2.032	3.472	2.853	0.815	1.834	1.019	3.500
3:00:45	194.5	0.204	78.3	5.689	3.80	40,8764	181.3	2,063	2.053	3.493	2.903	0.845	1.874	1.029	3.436
3:05:33	196.7	0.210	78.4	5.683	3.90	40,9192	183.5	2.086	2.076	3.516	2.914	0.833	1.873	1.041	3.499
3:10:25	198.3	0.216	78.0	5.677	4.00	40,9617	185.1	2.101	2.091	3.531	2.959	0.863	1.911	1.048	3.429
3:15:16	200.7	0.222	78.1	5.671	4.10	41,0042	187.4	2.126	2.115	3.555	2.974	0.854	1.914	1.060	3.484
3:20:07			77.8	5.665	4.20	41.0477	189.4	2,146	2,135	3,575	3.020	0.880	1.950	1.070	3.434
3:24:57			77.8	5.659	4.30		191.0		2,151	3,591	3.034	0.877	1.956	1.078	3.458
3:29:42			77.5	5.654	4.40		193.2		2,173	3,613	3.077	0.899	1.988	1,089	3.422
													2.000	1.099	3.441
3:34:30			77.5	5.648	4.50		195.2		2.193	3,633	3,099	0.901			
3:39:22			77.2	5.642	4.60		196.7		2.208	3,648	3,132	0.919	2.025	1.107	3.409
3:44:08	211.5	0.257	77.0	5.636	4.70	41.2623	198.3	2.234	2.223	3,663	3,163	0.935	2.049	1.114	3.382
3:48:46	213.6	0.263	77.0	5.630	4.80	41.3061	200.4	2.256	2,244	3,684	3,183	0.934	2.058	1.125	3.409
3:53:30	215.5	0.269	76.5	5.624	4.90	41.3489	202.3	2.274	2.262	3.702	3,239	0.971	2.105	1,134	3.334
3:58:17	216.8	0.275	76.7	5.618	5.00	41.3925	203.6	2.287	2,274	3,714	3,234	0.954	2.094	1.140	3.390
4:03:05			76.4	5.612	5.10		205.2		2.290	3.730	3.278	0.983	2.131	1.148	3.336
4:07:50			76.5	5.606	5.20		207.1		2.308	3.748	3.283	0.970	2.127	1.157	3.386
4:12:48			76.2	5.600	5.30		208.8		2.325	3.765	3.325	0.995	2.160	1.165	3.341
4:17:32			76.2	5.594	5.40		210.1		2.323	3.777	3.328	0.985	2.156	1,171	3.378
													2.194	1.179	3.322
4:22:22			75.9	5.588	5.50				2.353	3.793	3.373	1.015			
4:27:14			76.0	5.583	5.60		213.4		2.368	3.808	3.379	1.006	2.192	1.187	3.361
4:32:06			75.7	5.577	5.70		215.2		2.385	3.825	3.422	1.032	2.227	1,195	3.317
4:36:53	229,5	0.322	75.7	5.571	5.80	41.7438	216.3		2.395	3.835	3.427	1.026	2.227	1,200	3.339
4:41:45	231,1	0.328	75.4	5.565	5.90	41,7883	217,9	2.425	2.410	3.850	3.467	1.052	2.260	1.208	3.296

File: frm_20091207_cu_1 Sheet: Data-C Preparation Date: 1998 Revision Date: 1-2008

Project Number 175569069 Consolidation Values Final Values KDG 4.826 (in.) 12-9-09 5.914 (in.) 15.020 (cm) Date Test Number CU-1C Height Height 3.271 (in) Diameter 2,786 (in) 7.076 (cm) Dia. avg. Press No. Data File ID 6.095 (in*) 39.324 (cm^e) 8.401 (in⁴) Panel No. 20.0 Area Area avg. Lateral Pressure (psi)

AICO .	0.000	,	03.324	,,,,,		Alea avg.				- 41161 110.		a.		essure (psi)	20.0
												Ona	amber Pressu	re - σ_3 (psi)	90
			Pore						Corrected						Effective
		Deflection	Pressure	Corrected			Corrected		Deviator				b,	q	Principal
Clock Time	Load	Dial Reading	Reading	Hieght	Strain	Corrected	Load	Deviator	Stress*	σ_1	σ_1	α^3 ,	(0, +03)/2	$(\sigma_1 - \sigma_3)/2$	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	Stress (Isf)	(tsf)	(Isf)	(tsf)	(tsf)	(tsf)	(Isf)	σ_1'/σ_3'
4:46:38	232.6	0.334	75.4	5.559	6.00	41.8327	219.4	2.439	2.424	3.864	3.477	1.048	2.262	1.215	3.319
4:51:20	233.8	0.340	75.2	5.553	6.10	41.8769	220.6		2.435	3.875	3.509	1.069	2.289	1.220	3.282
4:56:06	234.9	0.346	75.1	5.547	6.20	41.9217	221.7	2,459	2.444	3.884	3.525	1.075	2.300	1.225	3.278
5:00:53	236,6	0.352	74.9	5.541	6.30	41.9664	223.4	2,475	2.459	3.899	3.554	1.089	2.321	1.232	3.263
													2.350	1.239	3.230
5:05:34	238,1	0.358	74.6	5.535	6.40	42.0113	224.8		2.473	3.913	3.589	1,111			
5:10:12	239.4	0.364	74.6	5.529	6.50	42.0561	226.2		2.485	3.925	3.595	1.105	2.350	1.245	3.252
5:14:51	240.5	0.370	74.1	5.523	6.60	42,1011	227.2		2.494	3.934	3.646	1.147	2.396	1.249	3.178
5:19:31	242.3	0.375	74.5	5.518	6.70	42,1461	229.0	2.527	2.510	3.950	3.634	1.119	2.377	1.258	3.248
5:24:11	243.4	0.381	74.1	5.512	6.80	42,1917	230.2	2,537	2.520	3.960	3.670	1.144	2.407	1.263	3.207
5:28:53	244.6	0.387	74.3	5.506	6.90	42.2367	231.4	2.547	2.530	3.970	3,668	1.133	2.400	1.268	3.238
5:33:32	246.1	0.393	73.9	5.500	7.00	42,2822	232.9	2,561	2.544	3.984	3.709	1.160	2.434	1.274	3.198
5:38:12			73.9	5.494	7.10	42,3275	234.2		2,556	3.996	3.717	1.156	2.436	1.280	3.215
5:42:49	248.1	0.405	73.6	5.488	7.20	42.3734	234.9		2.560	4.000	3.744	1.178	2.461	1.283	3.177
5:47:26	249.6		73.7	5.482	7.30	42.4194	236.3		2.573	4.013	3.753	1.175	2.464	1.289	3.194
													2.488	1.296	3.173
5:52:09	251.0		73.4	5.476	7.40	42.4647	237.8		2.586	4.026	3.783	1.192			
5:56:49			73.2	5.470	7.50	42.5104	238.6		2.591	4.031	3.804	1.208	2.506	1.298	3.150
6:01:34	253.6	0.429	73.2	5,464	7.60	42.5563	240.4		2.608	4.048	3.823	1.209	2.516	1.307	3.161
6:06:27	254.3	0.435	72.4	5.458	7.70	42.6028	241.1	2.632	2.613	4.053	3.883	1.265	2.574	1.309	3.069
6:11:23	255.9	0,441	73.0	5.453	7.80	42.6493	242.7	2.646	2.626	4.066	3.858	1.226	2.542	1.316	3.147
6:16:16	256.9	0,446	72.4	5.447	7.90	42.6950	243.7	2.654	2.634	4.074	3.909	1.270	2.590	1.320	3.078
6:21:03	257.9	0.452	72.7	5.441	8.00	42.7417	244.7	2.662	2.642	4.082	3.891	1.243	2.567	1.324	3.130
6:25:52			72.3	5.435	8.10	42.7878	246.3	2.676	2.656	4.096	3.936	1.275	2.605	1.331	3.088
6:30:46			72.5	5.429	8.20	42.8345	247.0		2.661	4,101	3.927	1.261	2.594	1.333	3.114
6:35:29	261,7		72.2	5.423	8.30	42.8810	248.5		2.674	4.114	3.964	1.285	2.624	1,339	3,085
													2.614	1.344	3,115
6:40:27	262.8		72.4	5.417	8.40	42.9278	249.5		2,682	4.122	3.958	1.270			
6:45:28			72.0	5.411	8.50	42.9752	250.7		2.692	4.132	3.995	1.298	2.647	1.349	3,078
6:50:19	265.1	0.488	72.2	5.405	8.60	43.0217	251.9	2.722	2.701	4.141	3.990	1.284	2.637	1,353	3,108
6:55:07	266.1	0.494	71.8	5,399	8.70	43.0688	252.9	2.730	2.709	4.149	4.027	1,313	2.670	1,357	3.066
6:59:58	267.4	0.500	71.9	5.393	8.80	43,1162	254.2	2.741	2.719	4.159	4.026	1.301	2.663	1.362	3.094
7:04:54		0.506	71.6	5.388	8.90	43,1634	255.1	2,748	2,726	4.166	4.059	1.327	2,693	1.366	3.058
7:09:44			71.7	5.382	8.99	43,2106	256.1		2,734	4.174	4.059	1.320	2.690	1.370	3.075
7:14:24	270.6		71.4	5.376	9.09	43.2581	257.4		2.745	4.185	4.089	1.339	2,714	1.375	3.053
						43,3058			2,752	4,192	4.094	1.337	2.716	1.379	3.062
7:19:23			71.4	5.370	9.19		258,4								
7:24:18			71.2	5.364	9.29	43,3534	259,3		2.758	4.198	4.120	1.357	2.738	1.382	3.037
7:29:03			71.2	5.358	9.39	43,4013	260.5		2,768	4.208	4.126	1.353	2.740	1.386	3.049
7:34:02			71.0	5.352	9.50	43.4495	261,7		2.777	4.217	4.153	1.371	2.762	1.391	3.029
7:38:55	275.7	0.547	70.9	5.346	9,59	43.4975	262.5	2.806	2.782	4.222	4.161	1.374	2.767	1.394	3.029
7:43:43	276.6	0.553	70.7	5.340	9.69	43.5454	263.4	2.812	2.788	4.228	4.180	1.387	2.783	1.397	3.014
7:48:39	277.5	0.559	70.6	5.334	9.79	43,5936	264.3	2,819	2,795	4.235	4.199	1.399	2.799	1.400	3.001
7:53:31	278.9	0.565	70.6	5.328	9.89	43.6419	265.7	2.831	2.807	4.247	4.212	1.400	2.806	1.406	3.008
7:58:20	279.8	0.570	69.8	5.323	9.99	43,6904	266.6	2.837	2.812	4,252	4.273	1.455	2.864	1.409	2.936
8:03:06			70,3	5.317	10.09	43,7389	267.5		2.819	4.259	4.240	1.415	2.827	1.412	2.996
8:08:00			69.8	5.311	10.19	43.7877	268.6		2.827	4.267	4.287	1.455	2.871	1.416	2.947
													2.846	1.421	2.994
8:12:52			70,2	5.305	10.29	43,8368	269.8		2.837	4.277	4.267	1.425			
8:17:43			69,8	5.299	10.39	43,8853	270.2		2,837	4,277	4.297	1.454	2.876	1.421	2.954
8:22:27			70,0	5.293	10.49	43,9343	271.6		2,849	4.289	4.292	1.438	2.865	1.427	2.985
8:27:16	285.7	0,606	69.7	5.287	10.59	43,9836	272.5	2.881	2.854	4,294	4.321	1.461	2.891	1.430	2.957
8:32:03	286.7	0.612	69.9	5.281	10.69	44.0330	273.5	2.888	2,862	4,302	4.312	1.445	2.878	1.433	2.984
8:36:45	287.5	0,618	69.5	5.275	10.79	44.0820	274.3	2,894	2.867	4,307	4.346	1.474	2.910	1.436	2.949
8:41:30	289.0	0.624	69.7	5.269	10.89	44.1315	275.8	2.906	2.879	4,319	4.345	1.461	2.903	1.442	2.974
8:46:16			69.4	5.263	10.99		276.5		2.883	4.323	4.372	1.484	2.928	1.444	2.946
8:50:55			69.4	5.258	11,09	44.2306	277.5		2.890	4.330	4.379	1.484	2.931	1,448	2.951
															2.941
8:55:37			69.2	5.252	11,19		278.6		2.898	4.338	4.399	1.496	2.947	1.452	
9:00:23			69.2	5.246	11,29	44,3308	279.6		2.905	4.345	4.406	1.496	2.951	1.455	2.945
9:05:04			69.0	5.240	11,39		280.2		2.908	4.348	4.423	1.510	2.966	1.457	2.929
9:09:50	294.4	0.659	68.6	5.234	11,49	44,4304	281.2	2.943	2.915	4.355	4.464	1.544	3.004	1.460	2.891
9:14:44	295.7	0.665	68.9	5.228	11.59	44.4810	282.5	2.954	2.925	4.365	4.449	1.519	2.984	1.465	2.929
9:19:33	296.2	0.671	68.3	5.222	11.69	44.5311	283.0	2.955	2.926	4.366	4.493	1.561	3.027	1.466	2,877
9:24:19		0.677	68.7	5.216	11.79	44.5815	284.1	2.964	2.935	4.375	4.472	1.532	3.002	1.470	2.919
9:29:14			68.3		11.89		285.0		2.940		4.507	1.562	3.034	1.472	2.885
		254													

Consolidation Values Final Values Height 5.914 (in.) 15.020 (cm) Height 4.826 (in.) 3.271 (in) 2.786 (in) 7.076 (cm) Diameter Dia. avg. 6.095 (in⁴) 39,324 (cm²) 8.401 (in⁴) Area avg. Area

 Tested By
 KDG

 Date
 12-9-09

 Press No.
 1

 Panel No.
 A

Project Number 175569069
Test Number CU-1C
Data File ID 1C
Lateral Pressure (psi) 20.0
Chamber Pressure - 07 (psi) 90

•						-		•		••••		Cha	amber Pressu	re - σ ₃ (psi)	90
			Pore						Corrected						Effective
		Deflection	Pressure	Corrected		0	Corrected	,	Deviator				ρ'	9	Principal
Clock Time		Dial Reading	Reading	Hieght	Strain	Corrected Area (cm²)	Load	Deviator	Stress*	σ ₁ (lsf)	σ _t '	σ ₃ '	(\sigma_1'+\sigma_3')/2	(a ₁ -a ₃)/2	Stress Ratio
(min,)	(lbf)	(in.)	(psi)	(in.)	(%)		(lbf)	Stress (tsf)	(Isf)		(tsf)	(Isf)	(tsf)	(tsf)	σ1, / α3,
9:34:11	299.3	0,689	68,6	5.204	11.99	44.6832	286.1	2.977	2.947	4.387	4.496	1,544	3.020	1.476	2.912
9:38:57	300.2	0,695	68.2	5.198	12.09	44.7335	287.0		2.954	4.394	4.529	1.570	3.050	1.479	2.885
9:43:58	300.9 301.9	0.701	68,4	5.193	12.19 12.29	44.7845 44.8354	287.7 288.7	2.987 2.995	2.957 2.964	4.397 4.404	4.520 4.548	1.558 1.579	3.039 3.064	1.481 1.485	2.901 2.880
9:48:54 9:53:55	303.0	0.706 0.712	68,1 68,2	5.187 5.181	12.29	44.8872	289.8		2.904	4,404	4,543	1,566	3.054	1.488	2.901
9:58:47	304,0	0.718	67.9	5.175	12.49	44.9381	290.7	3.002	2.978	4,418	4.571	1,589	3.080	1.491	2.877
10:03:45	305.3		68.2	5.169	12.59	44.9894	292.1	3.019	2,988	4.428	4.564	1.571	3.068	1.496	2.905
10:08:49	306.2		67,8	5.163	12.69	45.0414	293.0		2.993	4.433	4 597	1.599	3.098	1,499	2.875
10:13:48	306.7	0.736	68,0	5,157	12.79	45.0925	293.5		2.995	4.435	4.586	1,585	3.086	1.500	2.892
10:18:50	307.5		67.6	5,151	12.89	45.1444	294.3		2.999	4.439	4.618	1.613	3.115	1.502	2.862
10:23:51	308.8	0.748	67,8	5.145	12,99	45.1962	295.6	3.041	3.009	4.449	4.612	1.597	3.104	1.507	2.887
10:28:51	309.3	0.754	67.4	5.139	13.09	45.2479	296.1	3.043	3.010	4.450	4.639	1.624	3.132	1,508	2.857
10:33:43	310.5	0.760	67.6	5.133	13.19	45,3002	297.3	3.051	3.019	4.459	4.635	1.611	3.123	1.512	2.877
10:38:38	311.2	0.766	67.3	5.128	13.29	45,3523	298.0	3.055	3.022	4.462	4.662	1.635	3,149	1.514	2.851
10:43:36	312.0	0.771	67.4	5.122	13.39	45.4045	298.8	3.060	3.027	4.467	4.657	1.624	3.140	1.516	2.867
10:48:35	312.5	0.777	67.1	5.116	13.49	45,4570	299.3	3.062	3.029	4.469	4.681	1.648	3.164	1.517	2.841
10:53:29			67.2	5.110	13.59	45.5098	300.4		3.036	4.476	4.682	1.641	3.162	1.521	2.853
10:58:30	314.6		66,9	5,104	13.69	45.5623	301.4		3.042	4.482	4.707	1.660	3.184	1.524	2.836
11:03:25	315.3		67.0	5.098	13.79	45.6151	302.0		3.045	4.485	4.705	1.655	3.180	1.525	2.843
11:08:19			66.7	5.092	13,89	45.6685	302.6		3.047	4.487	4.727	1.674	3.200	1.526	2.823
11:13:17	316.8		66.8	5.086	13,99 14,09	45.7214	303.6		3.053 3.059	4.493	4.729 4.749	1,671 1,684	3.200 3.217	1.529 1.532	2.831 2.819
11:18:16			66.6 66.6	5,080 5,074	14,19	45.7742 45.8277	304.6 305.2		3.062	4.499 4.502	4.753	1.686	3.219	1.532	2.819
11;23:12 11;28:06			66.4	5.068	14.29	45,8811	306.4		3.070	4.510	4.772	1.697	3.235	1.537	2.811
11:33:05			66.4	5.062	14.39	45.9351	307.5		3.077	4.517	4.783	1.701	3.242	1.541	2.812
11:37:57	321.5		66.3	5.057	14.49	45.9884	308.3		3.081	4,521	4,792	1,706	3.249	1.543	2.809
11:42:49			65.6	5.051	14.59	46.0420	308.8		3.083	4.523	4.844	1.757	3.301	1.544	2.758
11:47:45			66.1	5.045	14.69	46.0960	309.6		3.087	4.527	4,811	1.719	3.265	1.546	2.799
11:52:44			65.6	5.039	14.79	46.1503	310.7		3.093	4,533	4,854	1.755	3.304	1.549	2.766
11:57:36	324.7	0.860	66.0	5.033	14.89	46,2047	311.5	3.135	3.098	4.538	4.829	1,727	3.278	1.551	2.797
12:02:23	325.6	0,866	65.6	5.027	14.99	46.2586	312.4	3.141	3.103	4,543	4.862	1.753	3.308	1.554	2.773
12:07:14	326.4	0.872	66.0	5.021	15.09	46,3134	313.2	3.144	3.107	4.547	4.842	1.730	3.286	1.556	2.799
12:12:02	326.8	0.878	65.6	5.015	15.19	46.3676	313.6		3.107	4,547	4,867	1.754	3.311	1.556	2,774
12:16:48			65.9	5.009	15.29	46,4228	314.8		3.115	4.555	4,852	1.732	3.292	1.560	2.802
12:21:37	329.0		65.6	5.003	15.39	46.4774	315.8		3.121	4,561	4,886	1.760	3.323	1.563	2.777
12:26:30			65.7	4.997	15.49	46.5325	316.6		3.125	4.565	4,877	1.746	3,311	1.565	2.793
12:31:15			65,4	4.992	15.59	46.5872	317.1		3.127	4.567	4.904	1.772	3.338	1.566	2.767
12:36:15			65,6	4.986	15.69 15.79	46.6426 46.6983	318.2		3.134 3.140	4.574 4.580	4.896 4.922	1.757 1.777	3.327 3.349	1.570 1.573	2.786 2.771
12:41:11 12:46:04			65.3 65.4	4,980 4,974	15.79	46.7534	319.3 319.8		3.140	4.581	4.922	1.768	3.341	1.573	2.780
12:50:54	333.8		65.2	4,968	15.99	46.8089	320.5		3.145	4.585	4.937	1.788	3.363	1.575	2.762
12:55:50			65.3	4,962	16.09	46.8647	321.8		3,153	4.593	4.937	1.779	3.358	1,579	2.775
13:00:52			65.1	4,956	16.19	46.9207	322.3		3.154	4.594	4.956	1.796	3.376	1.580	2.759
13:05:44			65.1	4,950	16,29	46.9767	323.3		3,160	4.600	4.959	1.794	3.376	1.583	2.765
13:10:38			64,9	4.944	16.39		324.0		3,163	4.603	4.975	1.807	3.391	1.584	2.753
13:15:46	338.2	0,955	65.0	4.938	16.49	47.0899	325.0	3.209	3,168	4.608	4.976	1.803	3.389	1.587	2.760
13:20:39	338.3	0,961	64.8	4.932	16.59	47.1457	325.1	3.207	3,166	4.606	4.987	1,817	3.402	1.585	2.746
13:25:36	339.2	0.967	64.6	4.927	16.69	47.2025	326.0	3,212	3,170	4.610	5.004	1.828	3,416	1.588	2.737
13:30:43	339.9	0.972	64.7	4.921	16.79	47.2587	326.7	3.215	3,173	4.613	5.001	1.823	3.412	1.589	2.743
13:35:47	340.4	0.978	64,2	4.915	16.89	47,3155	327.2	3,216	3.174	4.614	5.034	1,855	3.445	1.590	2.714
13:40:48			64.5	4.909	16.99		328.3		3,181	4.621	5.020	1.834	3.427	1.593	2.737
13:46:03			64.4	4.903	17.09		329.1		3,184	4.624	5.033	1.844	3.439	1.595	2.730
13:51:08				4.897	17.19		330.4		3.192	4,632	5.037	1.839	3.438	1.599	2.739
13:56:05				4.891	17.29		330.9		3.194	4.634	5.089	1.891	3.490	1.599	2.692
14:01:09				4.885	17.39		331.9		3.199	4,639	5.055 5,096	1.851 1.889	3.453 3.493	1.602 1.603	2.731 2.698
14:06:11				4.879 4.873	17.49 17.59		332.6 333.5		3.202 3.206	4.642 4.646	5,096	1.860	3.465	1.603	2.727
14:11:14 14:16:11				4.867	17.69		334.2		3.209	4.649	5.106	1.893	3.500	1.607	2.698
14:21:10			64.1	4.862	17.79		335.1		3.213	4.653	5.086	1.867	3.477	1.609	2.724
14:26:13			63.7	4.856	17,89		335.9		3.217	4.657	5.118	1.896	3.507	1.611	2.700

	Consolic	dation Values				Final \	/alues			Tested By	KDG		Pro	ject Number	175569069
Height	5.914	(in.)	15.020	(cm)		Height	4.826	(in.)		Date	12-9-09		Т	est Number	CU-1C
Diameter	2.786	(in)	7.076	(cm)		Dia. avg.	3.271	(in)		Press No.	1			Dala File ID	1Ç
Area	6.095	(in ^e)	39.324	(cm²)		Area avg.	8.401	(in ⁴)		Panel No.	Α		Lateral Pr	essure (psi)	20.0
						•		•		****		Cha	amber Pressu	re - O3 (psi)	90
			Pore						Corrected						Effective
		Deflection	Pressure	Corrected			Corrected		Deviator				Ð,	q	Principal
Clock Time	Load	Dial Reading	Reading	Hieght	Strain	Corrected	Load	Deviator	Stress*	σ_i	o,	σ_3	$(\sigma_1 + \sigma_3)/2$	$(\sigma_1 - \sigma_3)/2$	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	Stress (tsf)	(tsf)	(Isl)	(tsf)	(tsf)	(tsf)	(tsf)	a1 / a3
14:31:10	349.5	1.043	63.9	4.850	17.99	47.9502	336.3	3.261	3.216	4.656	5.101	1.879	3.490	1.611	2.715
14:36:11	350.4	1.049	63.5	4.844	18.09	48.0086	337.2	3.266	3.221	4.661	5.131	1.905	3.518	1.613	2.694
14:41:17	351.5	1.055	63.8	4.838	18.19	48.0675	338.3	3.272	3.227	4.667	5.116	1.884	3.500	1.616	2.716
14:46:21	351.9	1.061	63.4	4.832	18.29	48.1257	338.6	3.272	3.227	4.667	5.144	1.912	3.528	1.616	2.691
14:51:29	352.4	1.067	63.7	4.826	18.39	48.1846	339.2	3.274	3.228	4.668	5.128	1.895	3.511	1.617	2.707

Failure Criterion: Maximum Effective Principal Stress Ratio

Effective Strength Envelope c' = 0 tsf 3 $\phi' = 36.7 \text{ deg.}$ TAN $\phi' = 0.747$ △ Test A Failure Sketch O Test B Test A Shear Stress (tsf) □ Test C 2 0 2 3 5

	Norm	al Stress (tsf)						
	Specim	nen No.			Α	В	С	
Induced Pore Pressure vs. Strain		Water content %		W _o	19.3	18.2	#######	
2 - 4	Initial	Dry Density PCF		$^{\gamma}$ d $_{o}$	106.8	111.2	#######	
	Data	Saturation %		S _o	90.1	95.2	#######	
(tst)		Void Ratio		e _o	0.578	0.515	########	
2		Water content %		W _f	21.1	14.6	######	
Pore Pressure	After	Dry Density PCF		$^{\gamma}d_{f}$	107.3	120.8	########	
P P	Shear	Saturation %		Sr	100.0	100.0	########	
Q		Void Ratio		e _f	0.571	0.395	#######	
d D		Final Back Pressure	TSF	u _c	5.76	4.32	0.00	
0 \$		Principal Stress TSF @) failure	σ ₃ 'f	0.34	0.87	0.00	
0 5 10 15 20	Maxin	num Deviator Stress (tsf) @ failure	(σ ₁ '-σ ₃ '),		0.99	2.62	0.00	
Strain (%)	Timo to	(σ1'-σ3')max min.	(01-03)	t _f	48.5	102.9	0.0	
△Test A OTest B □Test C		ate Deviator Stress,		14	40.0	102.0	0.0	
- 20/2-5/24 Challeton to		t/sq ft	(σ1'-σ3') _{olt}	n/a	n/a	0.00	
	Initial C	Diameter, in.		Do	2.872	2.836	########	
Controlled - Strain Test	Initial h	leight, in.		Н。	6.008	5.975	########	
Description of Specimens Sandy Lean Clay (CL)	, red brov	vn, moist, firm						
		Type of Specimen	Undisturbe	d		Type of	test	R
LL PL PI Gs	2.7	Project	PAF - Peal	body .	Ash Pon	d		
Remarks:		Boring No.	STN-18 (N	1), S	ΓN-6 (N1)		
					Sample	No.	2	
		Depth Elev.	8.4'-8.9', 1	1.2'-1	1.7'			
		Laboratory	Stantec			Date	12-22-09	3
		TRIAXI	AL COMPR	ESSI	ON TES	TREPO	PRT	

aboratory Document Prepared By: MW Approved BY: TLK

36.7 deg.

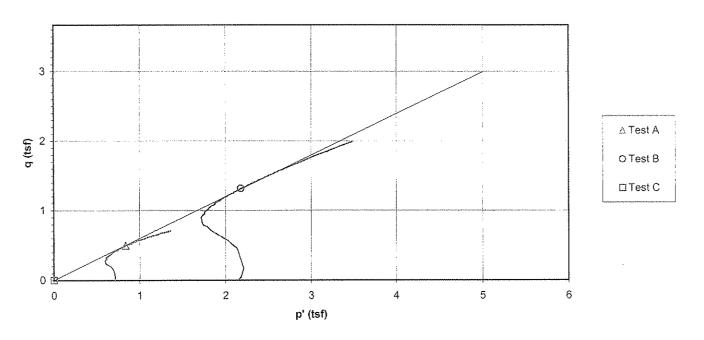
Project Sample ID

Revision Date: 1-2008

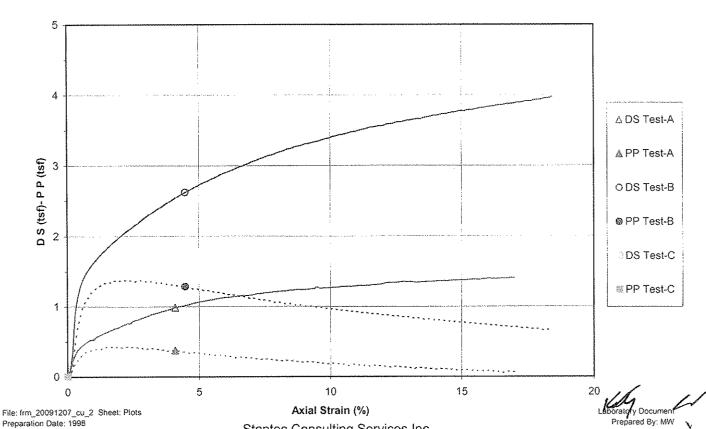
PAF - Peabody Ash Pond

STN-18 (N-1), 8.4'-8.9 & STN-6 (N1), 11.2'-11.7'

Failure Criterion:


Maximum Effective Principal Stress Ratio

Project No. 175569069 Test Number


c' = 0.00 tsf

Approved BY: TLK

Deviator Stress and Induced Pore Pressure vs. Axial Strain

Stantec Consulting Services Inc.

ASTM D4767-04

Test Number Cut-Za.	Project Name	PAF - Pe	abody Ash	Pond						Projec	t Number	1755690	69
Search Source Shart Sh	Sample Identification												
Indistribute	Visual Description				moist, firm								
Initial Specimen Diameter (in.) Specimen Height (in.) Volumes (in*) Specimen	Undisturbed										Date	12-9-200)9
Specimen Diameter (in.) Specimen Height (in.) Specimen Specimen Diameter (in.) Specimen Specimen Diameter (in.) Specimen	Specific Gravity	2.70	_ASTM D8	54 Method A	Liquid Limi!	i N/A	Plas	tic Limit	N/A	_ Plastic	city Index	N/A	
Second S			······································		Initi	al Specim	en Data						
Middle 2.859	Specimen Diameter (i	n.)	Specimer	Height (in.)		\	olumes (in³)			Specimen			
Colton 2,883 2,8760 (D ₀) 4 5,999 Water 12,8380 (Vw ₀) Wet Unit Weight (pcf) 127.	Top2.876	_	1	6.012		Sample	39.0283 (V	(_o)		Wet Weigh	t (g)	1301	.76
Voids 14.3633 (Vv.) Dry Unit Weight (pcf) 106.	Middle 2.859	_	2	6.009		Solids	24.6650 (V	/S _o)		Dry Weight	(g)	1091	.37
Area (in²) 6.4963 (A ₃) Avg. (H ₄) 6.0078 Degree of Saturation (%) 89.4 (S ₆) Set Up & Saturated: Wet xx Dry Saturation	Bottom 2.893	_	3	6.013		Water	12.8380 (V	/w _o)		Wet Unit We	ight (pcf)	12	7.1
Set Up & Saturated: Wet xx	Avg. 2.8760	(D _o)	4	5.998		Voids	14.3633 (V	/v _o)		Dry Unit We	ight (pcf)	10	6.5
Set Up & Saturated Wet xx	Area (in²) 6.4963	(A _o)	Avg. (H _o)	6.0078	Degree of Sat	uration (%)	89.4 (S	S _o)					
Set Up & Saturated: Wet xx	Moisture Content (%)	19.3	Final Trim	nmings		Void Ratio	0.582						
Back Pressure Burette Back Pressure Burette Chamber Burette						Saturation	on				***************************************	***************************************	
Panel Board Number D	Set Up & Saturated:	We	t xx	Dry						(Set up By	KDG	
Back Pressure Burette Chamber	Back Pressure Satura	ted to:	***************************************	80 (psi	Final Po	re Pressure	Parameter E	3	0.96			11-9-09	9
December Decembe										– Panel Board	l Number	D	***************************************
December Decembe	Height Readings (in.)		Back Pres	ssure Burette	Chambe	r Burette							
Final	Initial 0.1268		Initial	16.65 (in.)	Initial	11.76	(in.)	5	Specimen	Height (in.)	6.0033	(H _s)	
Consolidation Consolidati	Final 0.1313		Final	9.94 (in.)	Final	8.74	(in.)		Area (in ²) Method A	6.4866	(A _s)	
Consolidation Consolidati	Change -0.0045	- (ΔH ₀)	Change	-6.71 (in.)	Change	-3.02	(in.)	Sp	ecimen \	/olume (in³) ¯	38.94	(Vs)	
Initial 0.1313						Consolida	tion			-			
Initial 0.1313	Hoight Pondings (in)		Rack Pro	ncura Ruratta F	Paadings	Chamber	Rurette Reso	dinge		Proceur	se (nei)		
Final					=			*					
Change -0.0243 (AHc) Change -2.81 (in.) Change -3.13 (in.) Lateral 10 (\sigma_3) Height (in.) 5.9790 (Hc) Volume (in³) 38.7484 (Vc) Area (in³) Method B 6.4808 (Ac) Volume - Water (in³) 14.0834 (VWc) (VWc) (VWc) (VWc) Diameter (in.) 2.8726 (Dc) Water Content (%) 21.1 Dry Density (pcf) 107.3 Degree of Saturation (%) 100.0 (Sc) Vold Ratio 0.571 After Test		_		 ' '				•		-			
Volume (in³) 38.7484 (V _c) Volume (in³) 44.084 (V _c) Volume (in³) Volume (-		· · · · · · · · · · · · · · · · · · ·		(-)	
Area (in³) Method B 6.4808 (A _c) Volume - Water (in³) 14.0834 (VWc) t ₅₀ (min.) 1.603 Diameter (in.) 2.8726 (D _c) Water Content (%) 21.1 Dry Density (pcf) 107.3 Degree of Saturation (%) 100.0 (S _c) Void Ratio 0.571 After Test				(III.)		-				Laterai_	IV	(o ₃)	
Diameter (in.) 2.8726 (D _c) Water Content (%) 21.1 Degree of Saturation (%) 100.0 (S _c) Void Ratio 0.571 After Test Final Measurements Final Moisture Content Stresses (membrane corrected) at Failure (psi) Maximum Diameter 3.25 (in.) Wet Weight (g) 1322.17 Corrected Deviator 0.99 σ _d (tsf) Major Principal 1.33 σ ₁ ' ₁ (tsf) Corrected Diameter 3.226 (in.) Tare Weight (g) 0.00 Minor Principal 0.34 σ ₃ ' ₁ (tsf) Poungs Modulus for Membrane (psi) 200 Axial Strain at Failure (%) 4.10 Membrane Thickness (in.) 0.012 Failure Criterion: Maximum Effective Principal Stress Ratio Poviator Stress and Induced Pore Pressure vs. Strain p' vs. q Plot Gress-A DS Gress-A D	* '_ '	***************************************				_	W	٠,		h (!)	4.000		
After Test Final Measurements Final Measurements Final Moisture Content Maximum Diameter 3.25 (in.) Wet Weight (g) 1322.17 Wet weight (g) 1322.17 Corrected Deviator Major Principal Major Pr			_				`	/Wc)		t ₅₀ (min.)	1.603		
Final Measurements Final Moisture Content Maximum Diameter 3.25 (in.) Wet Weight (g) 1322.17 Wet weight (g) 1322.17 Corrected Deviator 0.99 \(\sigma_0\) (tsf) Major Principal 1.33 \(\sigma_1\) (tsf) Corrected Diameter 3.226 (in.) Tare Weight (g) 0.00 Minor Principal 0.34 \(\sigma_3\) (tsf) Rate of Strain (% / min.) 0.083 Youngs Modulus for Membrane (psi) 200 Axial Strain at Failure (%) 4.10 Membrane Thickness (in.) 0.012 Failure Sketch Deviator Stress and Induced Pore Pressure vs. Strain Deviator Stress and Induced Pore Pressure vs. Strain Deviator Stress and Induced Pore Pressure vs. Strain O 1 2 3 Strain % After Test Stresses (membrane corrected) at Failure (psi) Major Principal 1.33 \(\sigma_1\) (1sf) Rate of Strain (% / min.) 0.083 Axial Strain at Failure (%) 4.10 Deviator Stress and Induced Pore Pressure vs. Strain Deviator Stress and Induced Pore Pressure vs. Strain Deviator Stress and Induced Pore Pressure vs. Strain O 1 2 3 Strain % A Test-A DS Test-A D	Diameter (in.)						***************************************						
Final Measurements Final Moisture Content Maximum Diameter 3.25 (in.) Wet Weight (g) 1322.17 Wet weight (g) 1322.17 (WWf) Dry Weight (g) 1091.37 Corrected Diameter 3.226 (in.) Tare Weight (g) 0.00 Minor Principal 1.33 \(\sigma_1'\) (tsf) Rate of Strain (% / min.) 0.083 Youngs Modulus for Membrane (psi) 200 Membrane Thickness (in.) 0.012 Failure Sketch Deviator Stress and Induced Pore Pressure vs. Strain	Dry Density (pcf)	107.3	-		Degree of Sat	uration (%)	<u>100.0</u> (S	3 _c)		Void Ratio_	0.571		
Maximum Diameter 3.25 (in.) Wet Weight (g) 1322.17 Corrected Deviator 0.99 σ _d (tsf) Wet weight (g) 1322.17 (WWf) Dry Weight (g) 1091.37 Major Principal 1.33 σ ₁ ' ₁ (tsf) Corrected Diameter 3.226 (in.) Tare Weight (g) 0.00 Minor Principal 0.34 σ ₃ ' ₁ (tsf) Rate of Strain (% / min.) 0.083 Youngs Modulus for Membrane (psi) 200 Axial Strain at Failure (%) 4.10 Membrane Thickness (in.) 0.012 Failure Criterion: Maximum Effective Principal Stress Ratio Failure Sketch Deviator Stress and Induced Pore Pressure vs. Strain Thickness (in.) 0.012 ATest-A DS Test-A D						After Te							
Wet weight (g) 1322.17 (WWf) Dry Weight (g) 1091.37 Major Principal 1.33 σ₁' (tsf) Minor Principal Rate of Strain (% / min.) Nembrane Thickness (in.) Deviator Stress and Induced Pore Pressure vs. Strain	Final Measurem	nents		Final Mois				•		,			
Porrected Diameter 3.226 (in.) Tare Weight (g) 0.00 Minor Principal 0.34 $\sigma_{3'1}$ (tsf) Rate of Strain (% / min.) 0.083 Youngs Modulus for Membrane (psi) 200 Axial Strain at Failure (%) 4.10 Membrane Thickness (in.) 0.012 Failure Criterion: Maximum Effective Principal Stress Ratio Failure Sketch Deviator Stress and Induced Pore Pressure vs. Strain p' vs. q Plot 3 2 4 7 Test-A DS 2 2 3 4 Test-A PP 0 5 10 15 20 0 1 2 3 3 Griffsh	Maximum Diameter	3.25	(in.)	Wet Weight (g) <u>1322.17</u>	7 	(Correcte	d Deviato				
Youngs Modulus for Membrane (psi) 200 Axial Strain at Failure (%) 4.10 Membrane Thickness (in.) 0.012 Failure Criterion: Maximum Effective Principal Stress Ratio Failure Sketch Deviator Stress and Induced Pore Pressure vs. Strain	Wet weight (g)			Dry Weight (g	1091.37	,	M	lajor Prir	ncipal				
Youngs Modulus for Membrane (psi) 200 Membrane Thickness (in.) 0.012 Failure Criterion: Maximum Effective Principal Stress Ratio Deviator Stress and Induced Pore Pressure vs. Strain Deviator Stress and Indu	Corrected Diameter	3.226	<u>(in.)</u>	Tare Weight (9) 0.00	<u>)</u>	M	linor Prir	rcipal	0.34	σ ₃ ' _f (tsf)		
Membrane Thickness (in.) 0.012 Failure Criterion: Maximum Effective Principal Stress Ratio Failure Sketch Deviator Stress and Induced Pore Pressure vs. Strain Deviator Stress and Induced Pore Pressure vs. St							Rate	of Strain	(% / min.	+			
Failure Sketch Deviator Stress and Induced Pore Pressure vs. Strain Deviator Stress and Induced Pore	Youngs Modulu	s for Mem	brane (psi)	200						·			
3	Mem	brane Thic	kness (in.)	0.012		Failure	e Criterion: M	laximum	Effective	Principal Str	ess Ratio		
Δ Test-A DS	Failure Sket	ch] _	Deviator Stress and	i Induced Pore Pres	sure vs. Strain			р	o' vs. q Plot			
0 5 10 15 20 0 1 2 3 Strain % q' (tsf)		7	837		oderli dider terreteri del escetto de la primera de la composito de la composi			4		:			
0 5 10 15 20 0 1 2 3 Strain % q' (tsf)		1	#2 -			Δ Τι	est-A DS	2 -			ΔT	est-A	
0 5 10 15 20 0 1 2 3 Strain % q' (tsf)	/ \	1	8 7	- CS		. Te	est-A PP	4				an eastern Sala of	
Strain % q' (tsf)		1		Tota	40 45			•		······································	,		
	\	(0			20		0	1		3		
Comments:		4			want re					y (121)		111	
	Comments:											Kly	0

File: frm_20091207_cu_2 Sheet: Specimen-A Preparation Date: 1998 Revision Date: 1-2008

ASTM D4767-04

Project Name	PAF - Peal	body Ash P	ond,						Project	Number	175569069
Sample Identification	STN-6 (N1), 11.2'-11.	7'						Test	Number	CU-2B
Visual Description	Sandy Lea	n Clay (CL)), brown, wet, v	very soft					Prep	ared By	KDG
Undisturbed	Source	STN-6 (N1)), 11.2'-11.8'						<u></u>	Date	12-16-2009
Specific Gravity	2.70	ASTM D85	4 Method A	Liquid Limi	t <u>N/A</u>	Plas	tic Limit	N/A	Plastici	ty Index	N/A
				Initi	al Specime	n Data					
Specimen Diameter (li	ո.)	Specimen l	Height (in.)		V	olumes (in3)			Specimen		
Top <u>2.849</u>	_	1	5.967		Sample	37.7942 (\	o)		Wet Weight	(g)	1301.9
Middle 2.829	_	2	5.964		Solids	24.9015 (\	(S _o)		Dry Weight (g)	1101.8
Bottom <u>2.836</u>	_	3	5.966		Water	12.2121 (\	/w _o)		Wet Unit Weig	ght (pcf)	131.
Avg. <u>2.8380</u>	(D _o)	4	6.002		Voids	12.8927 (\	(v _o)		Dry Unit Wei	ght (pcf)	111.
Area (in²) 6.3258	(A _o)	Avg. (H _o)	5.9746	Degree of Sat	uration (%)	94.7 (8	S _o)			_	
Moisture Content (%)	18.2	Final Trimn	nings		Void Ratio	0.518					
					Saturatio	n					
Set Up & Saturated:	Wet	xx	Dry						Se	et up By	KDG
Back Pressure Satura	ted to:		60 (psi)	Final Po	re Pressure	Parameter (3	0.96		Date	12-17-09
									- Panel Board	Number	В
Height Readings (in.)		Back Press	sure Burette	Chambe	r Burette					•	
nitial 0.1297		Initial	16.72 (in.)	Initial	12.24	(in.)		Specimen	Height (in.)	5.9631	(H _s)
Final 0.1412	•	Final	15.42 (in.)	Final	9.61	(in.)		Area (in²) Method A	6.3014	(A _s)
Change -0.0115	- (ΔH _o)	Change	-1.30 (in.)	Change	-2.63	(in.)	S	pecimen \	/olume (in ³)	37.58	(V _s)
					Consolidat	ion		,			
Height Readings (in.)		Back Press	sure Burette Re	eadings	Chamber	Burette Rea	dings		Pressures	s (psi)	
Initial 0.1412		Initial	1.71 (in.)		Initial	17.61 (i	ገ.)		Chamber	90	
Final 0.1862	-	Final	9.11 (in.)		Final	10.22 (i	Դ.)		Back	60	
Change -0.0450	- (∆H _c)	Change	-7.40 (in.)		Change	-7.39 (i	٦.)		Lateral	30	(σ_3)
Height (in.)	5.9181	(H _c)		V	olume (in ³)	34.7387 (\	/ _c)				
Area (in ³) Method B	5.8699	(A _c)		Volume -	Water (in ³)	9.8372 (\	/Wc)		D ₅₀ (min.)	4.481	
Diameter (in.)	2.7338	(D _c)		Water C	Content (%)	14.6					
Dry Density (pcf)	120.8			Degree of Sat	uration (%)	100.0 (8	S _c)		Void Ratio	0.395	
			######################################		After Tes	st .					
Final Measurem	ents		Final Moistu	ure Content		Stresses	(membr	ane correc	cted) at Failure	e (psi)	
Maximum Diameter	3.352	(in.) V	Vet Weight (g)	1263.05	5_	(Correcte	ed Deviato	r <u>2.62</u> σ	_d (tsf)	
Wet weight (g)	1263.05	(WWf) D	Ory Weight (g)	1101.84	<u> </u>	N	lajor Pri	ncipal	<u>3.50</u> σ	1'f (tsf)	
Corrected Diameter	3.328	(in.) T	Γare Weight (g)0.00	<u>)</u>	N	linor Pri	ncipal	<u>0.87</u> σ	_{3'f} (tsf)	
						Rate	of Strair	ı (% / min.	0.042		
Youngs Modulu	s for Membi	rane (psi) _	200			Axial S	train at	Failure (%)4.49		
Meml	orane Thick	ness (in.)	0.012		Failure	Criterion: N	laximun	n Effective	Principal Stre	ss Ratio	
Failure Sketo	ch	5	eviator Stress and	Induced Pore Pres	sure vs. Strain		4	ŗ	o' vs. q Plot		
	~ │	543321 (st) dd %2	and a substitution of the	<u> </u>		ol P De	$\begin{array}{c} 4 \\ 3 \end{array}$			- to 100 program, 5 .	
		a 2				st-B DS	3	71,00 day transferdamenta del referencia del se		• TO	est-B
()	_/	%1 80 80			= □ □ Te	st-B PP	1 -		\$		
	⁄" ∣	0	5	10 15 ain %	20	Additional	0	1	2 3	4	

File: frm_20091207_cu_2 Sheet: Specimen-B Preparation Date: 1998 Revision Date: 1-2008

Comments:

	Consolidation Val	ues	Final Va	alues	Tested By	KDG	Project Number	175569069
Height	5.979 (in.)	15.187 (cm)	Height	4.962 (in.)	Date	12-10-09	Test Number	CU-2A
Diameter	2.873 (in)	7,297 (cm)	Dia. avg.	3.218 (in)	Press No.	2	Data File ID	2A
Area	6.481 (in ⁴)	41.814 (cm²)	Area avg.	8.134 (in²)	Panel No.	D	Lateral Pressure (psi)	10.0
			_				Chamber Pressure - σ_3 (psi)	90

												Cha	amber Pressu	ire - σ ₃ (psi)	90
		Deflection	Pore						Corrected						Effective
Clock		Dial	Pressure	Corrected			Corrected	Deviator	Deviator				ρ'	q	Principal
Time	Load	Reading	Reading	Hieght	Strain	Corrected	Load	Stress	Stress*	σ_1	σ_t	α^3	$(\alpha_1'+\alpha_3')/2$	$(\alpha^{1}-\alpha^{3})/5$	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(Isf)	σ ₁ ' / σ ₃ '
0:00:00	13.8	0,003	80.1	5.979	0,00	41.8141	0.0	0.000	0.000	0.720	0.720	0.714	0.717	0.003	1.008
0:00:41	22.0	0,009	80,7	5.973	0.10	41.8576	8.2	0,091	0,091	0.811	0.767	0.671	0.719	0.048	1.144
0:01:38	33.7	0.015	81.7	5.967	0,20	41.8992	19.9	0.221	0.221	0.941	0.825	0.598	0.712	0.113	1.378
0:02:53	41,9	0.021	82.6	5.961	0,30	41.9415	28.2	0.312	0,311	1.031	0.850	0.533	0.691	0.159	1.595
0:04:07	48.0	0.027	83.3	5.955	0,40	41,9825	34,2	0.379	0,378	1.098	0.866	0.483	0.674	0.192	1.794
0:05:20	51.8	0.033	84.0	5.949	0.50	42.0252	38.0	0.420	0.419	1.139	0.853	0.429	0.641	0.212	1.991
0:06:33	54.6	0.039	84.5	5.943	0.60	42,0668	40,8	0.451	0.450	1.170	0.848	0.393	0.620	0.228	2.159
0:07:46	57.1	0.045	84.9	5.937	0.70	42,1096	43,3	0.479	0.477	1.197	0.849	0.367	0.608	0.241	2.317
0:08:59	59.7	0.051	85.1	5.931	0.80	42,1523	45.9	0,506	0.504	1.224	0.861	0.352	0.606	0.255	2.450
0:10:10	61.8	0,057	85.3	5.925	0.90	42,1947	48.0	0.529	0.527	1.247	0.871	0.339	0.605	0.266	2.573
0:11:23	61.5	0.063	85.3	5,919	1.00	42.2369	47.7	0,525	0.523	1.243	0.864	0.335	0.599	0.264	2.575
0:12:36	65.3	0,069	85.5	5,913	1.10	42,2800	51.5	0.567	0.564	1.284	0.891	0.321	0.606	0.285	2.775
0:13:47	66.9	0.075	85.6	5.907	1.20	42,3222	53,2	0.584	0.581	1.301	0.904	0.317	0,611	0.293	2.850
0:15:03	68,8	0.081	85,6	5,901	1,31	42.3677	55,0	0.604	0,601	1.321	0.926	0.320	0.623	0.303	2.894
0:16:14	70.7	0.087	85,9	5.895	1.41	42.4100	56.9	0.624	0.621	1.341	0.923	0.297	0.610	0.313	3.106
0:17:24	72.0	0.093	85,9	5.889	1.51	42.4533	58.2	0.638	0.634	1.354	0.932	0.292	0.612	0.320	3,187
0:18:33	73,8	0,099	86.0	5.883	1.60	42.4947	60.0	0.656	0.653	1.373	0,949	0,291	0.620	0.329	3,260
0:19:48	75.0	0.105	85.9	5.877	1.70	42,5386	61.2	0.670	0.665	1.385	0.963	0.292	0.628	0.336	3,297
0:20:59	76.7	0.111	85.9	5,871	1,81	42,5828	62,9	0,687	0.683	1.403	0.981	0.293	0.637	0.344	3.347
0:22:10	77.6	0.117	85.9	5.865	1.90	42.6245	63,8	0,696	0.691	1.411	0,991	0.294	0.642	0.348	3,371
0:23:23	79.3	0.123	85.9	5,859	2.00	42,6687	65.5	0,714	0.709	1.429	1.012	0.297	0.654	0.357	3,410
0:24:34	81.0	0.129	85.8	5.853	2.10	42,7128	67.2	0.732	0.726	1.446	1.036	0.304	0.670	0.366	3,405
0:25:44	82.5	0.135	85.9	5.847	2.20	42,7549	68.7	0.747	0.742	1,462	1,041	0.293	0.667	0.374	3.546
0:26:58	84.2	0.141	86.0	5.841	2.30	42,7994	70.4	0.765	0.759	1.479	1.055	0.290	0.672	0.382	3.639
0:28:11	83.8	0.147	85.9	5.835	2.40	42.8441	70.1	0.760	0.755	1,475	1.056	0.296	0.676	0,380	3.570
0:29:24	87.5	0.153	85.9	5.829	2.50	42.8876	73.7	0.799	0.793	1,513	1.094	0.295	0.695	0.399	3.704
0:30:35	88.5	0.159	85.8	5.823	2.60	42,9310	74.8	0.810	0.804	1,524	1.109	0.299	0.704	0.405	3.702
0:30:35	89.5	0.165	85.8	5.817	2.70	42,9746	75.7	0.819	0.813	1.533	1.121	0.303	0.712	0.409	3.703
0:32:59	91.2	0.103	85.7	5.811	2.80	43,0198	77.4	0.836	0.830	1.550	1.142	0.307	0.725	0.418	3.721
				5.805	2.90	43,0198	78.3	0.846	0.839	1.559	1.158	0.314	0.736	0.422	3.689
0:34:09	92.1	0.177	85.6	5,799	3.00	43,1088	80.1	0.864	0.857	1.577	1.191	0.329	0.760	0.431	3.623
0:35:23	93.9	0.183	85.4										0.746	0.436	3.811
0:36:33	94.8	0.189	85.7	5.794	3.10	43,1522	81.1 82.9	0.874	0.866	1.586	1.182	0.310 0.311	0.756	0.445	3.863
0:37:47	96.7	0,195	85.7	5.787	3.20	43,1985		0.892	0.885	1.605	1.201		0.766	0.451	3.859
0:38:55	97.8	0.201	85.6	5.782	3.30	43,2415	84.0	0.903	0.895	1.615	1,216	0.315	0.777	0.455	3.834
0:40:08	98.8	0.207	85.5	5.776	3.40	43.2861	85.0	0.913	0.905	1.625	1.232	0.321	0.787	0.460	3.810
0:41:19	99.8	0.213	85.5	5.770	3.50		86.0	0.923	0.914	1.634	1.247	0.327	0.799	0.467	3.815
0:42:32	101.2	0.219	85.4	5.763	3.60	43.3772	87.4	0.937	0.929	1,649	1.266	0.332	0.809	0.471	3.789
0:43:45	102.0	0.225	85.3	5.757	3.70	43.4228	88,3	0.945	0,936	1.656	1.280	0.338	0.826	0.471	3.748
0:44:56	103.5	0.231	85.2	5.752	3.80	43,4674	89.7	0,959	0.950	1.670	1,304	0.348			3.803
0:46:07	104,2	0.237	85.2	5.746	3.90	43.5126	90.4	0.967	0.957	1,677	1.306	0.344	0.825	0.481	
0:47:17	105.9	0.242	85.3	5.740	4.00	43.5569	92.1	0.983	0.974	1.694	1.320	0.341	0.831	0.490	3.872 3.889
0:48:28	107,1	0.248	85.2	5.734	4.10	43,6022	93,3	0.995	0.985	1.705	1,334	0.343	0.838	0.495	
0;49;41	108.2	0.255	85.2	5.728	4.20	43,6493	94,4	1,006	0.996	1.716	1.350	0.349	0.849	0.501	3.870
0:50:54	108,8	0.261	85.1	5.722	4.31	43,6955	95.0	1,011	1,000	1.720	1,362	0.356	0.859	0.503	3.824
0:52:05	109.6	0.266	85.0	5.716	4.40		95.8	1,019	1,008	1.728	1.375	0.361	0.868	0.507	3.806
0:53:16	110.5	0.272	84.9	5.710	4,50		96.7	1.027	1,017	1.737	1,388	0.366	0,877	0.511	3.794
0:54:26	111,6	0.278	84.8	5.704	4.60		97.8	1.037	1.026	1.746	1.405	0.373	0.889	0.516	3.767
0:55:37	112.5	0.284	84.6	5.698	4.70		98.8	1.047	1.035	1.755	1.430	0.389	0.909	0.520	3.679
0:56:50	114.0	0,291	84.8	5.692	4.81	43.9249	100.2	1.061	1.049	1.769	1.428	0.374	0.901	0.527	3,823
0:57:58	114,8	0,296	84,8	5.686	4.90	43.9699	101.0	1.068	1,057	1,777	1,437	0.374	0.906	0,531	3.837
0:59:09	115.6	0.302	84.8	5.680	5.00		101.9	1.076	1.064	1.784	1.447	0.377	0.912	0.535	3.836
1:00:20	116.3	0.308	84.6	5.674	5.10	44,0626	102,5	1.082	1.069	1.789	1.460	0.385	0.923	0.537	3.789
1:01:30	117.0	0.314	84.6	5.668	5.20	44,1088	103.2	1.088	1.076	1.796	1.473	0.391	0.932	0.541	3.764
1:02:41	118.1	0.320	84.5	5.662	5.30	44.1553	104.4	1.099	1.086	1.806	1.488	0.396	0.942	0.546	3.759
1:03:52	118.8	0.326	84.4	5.656	5.40	44.2020	105.0	1.105	1.092	1.812	1.499	0.402	0.950	0.549	3.732
1:05:02	119,3	0.332	84.3	5.650	5.50	44.2494	105.5	1.109	1.096	1.816	1.511	0.409	0.960	0.551	3.692
1:06:13	120.2	0,338	84.3	5.644	5.60	44,2959	106.4	1.117	1.104	1.824	1.520	0.411	0.966	0.555	3.698
1:07:24	121.1	0,344	84.4	5.638	5.70	44.3425	107.3	1,126	1,112	1.832	1.523	0.406	0.964	0.559	3.756
1:08:34	121.7	0.350	84.3	5.632	5.80	44.3895	107.9	1,130	1.116	1,836	1.529	0.407	0.968	0.561	3.753
1:09:45	122.5	0.356	84.3	5.626	5.90	44.4366	108.7	1,137	1.123	1,843	1.542	0.414	0.978	0.564	3.727

Revision Date: 1-2008

	Consolidation Valu	ies	Final \	/alues	Tested By	KDG	Project Number	175569069
Height	5.979 (in.)	15.187 (cm)	Height	4.962 (in.)	Date	12-10-09	Test Number	CU-2A
Diameter	2.873 (in)	7.297 (cm)	Dia. avg.	3.218 (in)	Press No.	2	Data File ID	2A
Area	6.481 (in*)	41.814 (cm²)	Area avg.	8.134 (in ⁴)	Panel No.	D	Lateral Pressure (psi)	10.0
					•		Chamber Pressure - 03 (psi)	90

11100		•		` ,				` '				Cha	amber Pressu	re " Ctv (nei)	90
												One	amber messu	16 - O3 (psi)	30
		Deflection	Pore						Corrected						Effective
Clock		Dial	Pressure	Corrected			Corrected	Deviator	Devlator				p'	q	Principal
Time	Load	Reading	Reading	Hieght	Strain	Corrected	Load	Stress	Stress*	σş	σ_1	σ_3	(01'+03')/2	$(\sigma_1 - \sigma_3)/2$	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	(tsf)	(tsf)	(tsf)	(lsf)	(tsf)	(tsf)	(tsf)	σ_1' / σ_3'
1:10:56	123.3	0.362	84.2	5.620	6.00	44.4836	109.5	1.145	1.131	1.851	1,555	0.419	0.987	0.568	3.711
1:12:09	123.5	0.368	84.1	5.614	6.10	44.5326	109.7	1.146	1.131	1.851	1.561	0.425	0.993	0.568	3.676
1:13:17	124.1	0.374	84.0	5.608	6.20	44.5791	110.3	1.151	1.136	1.856	1.570	0.429	1.000	0.571	3.661
1:14:31	124.8	0.380	84.0	5.602	6.30	44.6275	111.0	1.156	1.141	1.861	1.581	0.434	1.008	0.573	3.640
1:15:41	125.3	0,386	83,8	5.596	6.40	44.6749	111.5	1.161	1.145	1.865	1.599	0.449	1.024	0.575	3.566
1:16:52	126.0	0,392	83.9	5.590	6.50	44.7221	112.3	1.167	1.152	1.872	1,595	0.438	1.017	0.579	3.642
	126.7	0,398	83.9	5.584	6.60	44.7698		1.173	1.157		1.599	0.436	1.018	0.581	3.665
1:18:03							112.9			1.877			1.021	0.582	3.652
1:19:16	126.9	0.404	83.9	5.578	6.70	44.8189	113.2	1.174	1.158	1.878	1.602	0.439			
1:20:26	126.8	0.410	83.8	5.572	6.80	44.8663	113.0	1.172	1.155	1.875	1.605	0.444	1.025	0.580	3.611
1:21:37	127.5	0.416	83.8	5.566	6.90	44.9139	113.7	1.177	1.161	1.881	1.616	0.450	1.033	0.583	3.592
1:22:50	127,9	0.422	83.7	5.560	7.00	44.9629	114.1	1.180	1.163	1.883	1.623	0.454	1.038	0.584	3.575
1:24:01	128,6	0.428	83.6	5,554	7.10	45.0105	114.8	1.186	1.169	1.889	1.632	0.458	1.045	0.587	3.564
1:25:14	130.0	0.434	83.6	5.548	7.20	45.0591	116.2	1.199	1.182	1.902	1.651	0.464	1.058	0.594	3.561
1:26:25	130,5	0,440	83,3	5.542	7.30	45.1076	116.7	1.203	1.185	1.905	1.670	0.479	1.075	0.596	3.486
1:27:38	130,9	0,446	83,6	5.536	7.40	45.1570	117.1	1.206	1.188	1.908	1.656	0.462	1.059	0.597	3.582
1:28:51	131,8	0,452	83,6	5,530	7.50	45.2057	118.0	1.214	1.196	1.916	1.665	0.463	1.064	0.601	3.595
1:30:04	132.0	0,458	83.6	5.524	7.60	45.2555	118.2	1.214	1.196	1.916	1.666	0.464	1.065	0.601	3.589
1:31:15		0,464	83.5	5,518	7.70	45.3035	118.9	1.220	1.202	1.922	1.677	0.470	1.074	0.604	3.569
													1.080	0.605	3.551
1:32:28	133.2	0.470	83.4	5.512	7.80	45,3534	119.4	1.224	1.205	1.925	1.686	0.475	1.087	0.607	3.535
1:33:41	133.7	0.476	83.3	5.506	7.90	45,4030	119.9	1.228	1.209	1.929	1.694	0.479			
1:34:51	134.1	0.482	83.3	5.501	8,00	45,4512	120.3	1.231	1.212	1.932	1.700	0.483	1.092	0.609	3.520
1:36:04	134.8	0.488	83.2	5.494	8.10	45,5013	121.0	1.237	1.218	1.938	1.716	0.493	1.104	0.612	3.484
1:37:15	135.3	0.494	83.2	5,489	8.20	45.5504	121.5	1.240	1.221	1.941	1.713	0.487	1.100	0.613	3.519
1:38:28	135.5	0.500	83.3	5.482	8.30	45,6010	121.7	1.241	1.221	1.941	1.710	0.483	1.096	0.613	3.539
1:39:39	136.2	0.506	83.3	5.477	8,40	45,6503	122.4	1.247	1.226	1.946	1.716	0.484	1.100	0.616	3.545
1:40:50	136.9	0.512	83.2	5.471	8,50	45.6993	123.1	1.253	1.233	1.953	1.728	0.490	1.109	0.619	3.528
1:42:03	137.2	0.518	83.2	5,465	8,60	45.7500	123.4	1.255	1.234	1.964	1.732	0.493	1.113	0.620	3.515
1:43:16		0.524	83,1	5,458	8,71	45.8013	124.1	1.260	1.239	1.959	1.742	0.498	1.120	0.622	3,501
1:44:26		0.530	83.0	5.453	8.80	45.8511	124,6	1.264	1.243	1.963	1.749	0.501	1.125	0.624	3.491
	138.0	0.535	83.0	5,447	8.90	45.9000	124.2	1.258	1.237	1.957	1.748	0.506	1.127	0.621	3.457
1:45:37															
1:46:50		0.541	82.8	5.441	9.00	45.9509	124.8	1,263	1.241	1.961	1.767	0.520	1.144	0.624	3.398
1:48:03		0.548	83.0	5.435	9.10	46.0020	125.0	1,263	1,241	1.961	1.751	0.505	1,128	0.623	3.471
1:49:16		0,554	83.0	5.429	9.20	46.0531	125.7	1.270	1.247	1.967	1.757	0.504	1.130	0.627	3.487
1:50:27	140.0	0.559	83.0	5.423	9.30	46.1026	126.2	1.273	1.250	1.970	1.760	0.505	1,133	0.628	3.489
1:51:40	140.7	0.565	82.9	5.417	9.40	46.1542	126.9	1.279	1.256	1,976	1.774	0.512	1,143	0.631	3.462
1:52:51	142.8	0.571	82.8	5.411	9.50	46.2046	129.1	1.299	1.276	1,996	1,798	0.516	1,157	0.641	3.483
1:54:01	141.2	0.577	82.8	5.405	9.60	46.2555	127.4	1.281	1,258	1.978	1.783	0.519	1.151	0.632	3.432
1:55:17	141.5	0.583	82.7	5.399	9.70	46,3082	127.7	1.282	1,259	1,979	1,788	0.523	1,155	0.632	3.417
1:56:28	142.3	0.589	82.6	5.393	9.80	46,3585	128.5	1,289	1.265	1.985	1.802	0.531	1,166	0.635	3.394
1:57:41		0.595	82.6	5.387	9.90	46.4101	128,7	1.289	1.266	1.986	1.806	0.535	1,170	0.636	3.378
1:58:54		0,601	82.7	5.381	10.00	46.4615	128.8	1.289	1.265	1,985	1,795	0.525	1.160	0.635	3.420
2:00:07		0,607	82.7	5.375	10.10	46.5133	129.5	1.295	1.270	1.990	1,800	0.524	1,162	0,638	3.434
				5.369	10.20	46.5651	129.7	1.296	1.271	1,991	1,807	0.530	1,169	0.638	3.408
2:01:20		0,613	82.6												
2:02:33		0,619	82.6	5.363	10.30	46.6171	129.9	1.296	1.271	1,991	1.811	0.534	1.172	0.639	3,392
2:03:46			82.5	5.357	10.40	46,6686	130.8	1.303	1.278	1,998	1,821	0,537	1.179	0.642	3,389
2:05:00			82.5	5.351	10.50	46.7208	131.4	1.308	1.283	2.003	1.829	0.540	1.185	0,644	3,385
2:06:15	145.1	0.637	82.4	5,345	10.60	46.7745	131.4	1.306	1.280	2.000	1.833	0.547	1.190	0.643	3,353
2:07:26	145.7	0.643	82.2	5.339	10,70	46.8257	131.9	1.310	1.284	2.004	1.851	0.561	1.206	0.645	3,298
2:08:41	145.5	0.649	82.4	5.333	10.81	46.8795	131.7	1.306	1.280	2.000	1.831	0.545	1.188	0.643	3.358
2:09:55	146.4	0.655	82.5	5.327	10,90	46.9309	132.6	1.314	1.288	2.008	1.835	0.542	1.189	0.647	3.385
2:11:08			82.4	5.321	11.00		133.1	1.317	1.291	2.011	1.840	0.544	1.192	0.648	3.383
2:12:23			82.4	5.315	11.11	47.0378	133.8	1.323	1.296	2.016	1.852	0.551	1.201	0.651	3,364
2:13:36			82.3	5.309	11.20		133.8	1.322	1.295	2.015	1,855	0,554	1.205	0.650	3,345
							134.1		1,296	2.016	1,858	0.557	1.207	0.651	3.338
2:14:52			82.3	5.303	11.30			1,323							
2:16:05			82.2	5.297	11.40		134,5	1,325	1.297	2.017	1.865	0.562	1.214	0,651	3.317
2:17:18			82.1	5.291	11.50		134,8	1.327	1.299	2.019	1.877	0.572	1.224	0.652	3.281
2:18:31		0.697	82.2	5.285	11.60		135.6	1.333	1.305	2.025	1.871	0.560	1.216	0.655	3.339
2:19:47					11.70		136.0	1.336	1.307	2.027	1.871	0.558	1.215	0.657	3.352
2:21:00	150.2	0.709	82.2	5.273	11.80		136.4	1.338	1.310	2.030	1.874	0.559	1.217	0.658	3.353
2:22:16	150.7	0.715	82.1	5.267	11,90	47.4644	136.9	1.341	1.312	2.032	1.883	0.565	1.224	0.659	3.331

	Consolidation Valu	es	Final Val	ues	Tested By	KDG	Project Number	175569069
Height	5.979 (in.)	15.187 (cm)	Height	4.962 (in.)	Date	12-10-09	Test Number	CU-2A
Diameter	2.873 (in)	7.297 (cm)	Dia. avg.	3.218 (in)	Press No.	2	Data File ID	2A
Area	6.481 (in ⁴)	41.814 (cm²)	Area avg.	8.134 (in²)	Panel No.	Ð	Lateral Pressure (psi)	10.0
					-		Chamber Pressure • σ ₃ (psi)	90

												Cha	amber Pressu	ice · α3 (baj)	90
Clock Time (min.)	Load (ibf)	Deflection Dial Reading (in.)	Pore Pressure Reading (psi)	Corrected Hieght (in.)	Strain (%)	Corrected Area (cm²)	Corrected Load (lbf)	Deviator Stress (Isf)	Corrected Deviator Stress* (tsf)	σ ₁ (Isf)	σ ₁ ' (tsf)	σ ₃ ' (tsf)	ρ' (σ ₁ '+σ ₃ ')/2 (lsf)	ο (σ ₁ -σ ₃)/2 (tst)	Effective Principal Stress Ratio σ_1' / σ_3'
2:23:31	151,5	0.721	82.1	5.261	12.01	47.5192	137.7	1,347	1.319	2.039	1,893	0.569	1.231	0.662	3.328
2:24:45	153.0	0.727	82.1	5.255	12.10	47,5726	139.2	1.361	1.332	2.052	1.909	0.572	1.241	0.669	3.339
2:25:58	153.8	0.733	82.0	5.249	12.21	47.6272	140.0	1.367	1.338	2.058	1,919	0.576	1.248	0.672	3.331
2:27:08	154.0	0.739	81.9	5.243	12.30	47.6799	140.2	1.367	1.337	2.057	1,926	0.583	1.255	0.672	3.302
2:28:22	154.4	0.745	82.0	5.237	12.40	47.7351	140.7	1.370	1.340	2,060	1,925	0.579	1.252	0.673	3.324
2:29:32	154.3	0.751	82.0	5.231	12.50	47.7889	140.5	1.367	1.337	2.057	1,917	0.574	1.245	0.671	3.339
2:30:45	155.0	0.757	82.0	5.225	12.60	47.8436	141.2	1.372	1.342	2.062	1,922	0.574	1.248	0.674	3.346
2:31:58	155.6	0.763	81.9	5.219	12.70	47.8994	141.8	1.377	1.346	2.066	1,931	0.580	1.256	0.676	3.332
2:33:12	156.5	0.769	81.9	5.213	12.81	47.9550	142.7	1.384	1.353	2.073	1,941	0.583	1.262	0.679	3.331
2:34:22	156.2	0.775	81.9	5.207	12.91	48.0100	142.4	1.379	1.348	2.068	1,939	0.585	1.262	0.677	3.312
2:35:33	156.5	0.781	81.8	5.201	13.00	48.0640	142.7	1.380	1.349	2.069	1,944	0.590	1.267	0.677	3.297
2:36:44	156.8	0.787	81,8	5,196	13,10	48,1194	143.0	1.382	1.350	2.070	1.950	0.594	1.272	0.678	3.284
2:37:54	156.2	0.793	81,5	5.190	13.20	48.1747	142.4	1.375	1.343	2.063	1.958	0.609	1.284	0.674	3.213
2:39:05	156,1	0,799	81.8	5.184	13,30	48,2300	142.3	1.372	1.340	2.060	1.935	0.590	1.262	0.673	3.281
2:40:18	156.4	0,805	81.8	5.177	13,40	48.2869	142.6	1.373	1,341	2.061	1.936	0.589	1.262	0.673	3.286
2:41:27	157.2	0.811	81.8	5.172	13.50	48.3415	143.4	1.380	1.347	2.067	1.943	0.590	1.267	0.676	3.292
2:42:40	157.5	0.817	81.7	5.166	13.60	48.3987	143.8	1.381	1.348	2.068	1.950	0.596	1.273	0.677	3.272
2:43:50	158.1	0.823	81.7	5.160	13.70	48.4542	144.3	1.385	1.352	2.072	1.957	0.599	1.278	0.679	3.265
2:45:04	158,3	0.829	81.6	5.154	13.81	48.5112	144.5	1.385	1.352	2.072	1,961	0.603	1.282	0.679	3.253
2:46:14	158.7	0.834	81,6	5.148	13.90	48.5664	144.9	1.388	1.354	2.074	1,966	0.606	1.286	0.680	3.243
2:47:27	159.1	0.841	81.5	5.142	14.00	48.6237	145.3	1.390	1.356	2.076	1,974	0.612	1.293	0.681	3.224
2:48:38	159.8	0.846	81.5	5.136	14.10	48.6796	146,0	1.394	1.361	2.081	1,979	0,613	1.296	0.683	3.230
2:49:51	159.7	0.853	81.6	5.130	14.21	48.7376	145.9	1.392	1.358	2.078	1,967	0.603	1.285	0.682	3.260
2:51:04	160.3	0.859	81.6	5.124	14.31	48.7945	146.5	1.396	1.362	2,082	1.972	0.604	1.288	0.684	3.264
2:52:18	160.3	0.865	81.5	5.118	14.41	48.8516	146.5	1.394	1.360	2.080	1.974	0.609	1.291	0.683	3.243
2:53:28	160.8	0.870	81.5	5.112	14.50	48.9069	147.1	1.398	1.363	2.083	1.981	0.612	1.296	0.684	3.238
2:54:41	161.5	0,876	81.5	5.106	14.60	48.9643	147.7	1.403	1.368	2.088	1.988	0.615	1.302	0.687	3.232
2:55:55	162.0	0,882	81.4	5.100	14.70	49.0216	148.2	1.406	1.371	2.091	1.994	0.617	1.306	0.688	3.229
2:57:08	162.3	0.888	81.4	5.094	14.80	49.0799	148.5	1.407	1.371	2.091	1.999	0.622	1.310	0.689	3.215
2:58:21	162.5	0.894	81,1	5.088	14.90	49.1374	148.8	1.408	1.372	2.092	2.016	0.638	1.327	0,689	3.159
2:59:34	162.8	0.900	81.4	5.082	15.00	49.1952	149.1	1.409	1.373	2.093	1.997	0.619	1.308	0.689	3.228
3:00:47	163.2	0.906	81.4	5.076	15,10	49.2526	149.4	1.410	1.374	2.094	1.997	0.617	1.307	0,690	3.235
3:02:03	163.5	0.912	81.4	5,070	15,21	49.3126	149.7	1.412	1.375	2.095	2.000	0.619	1.309	0.690	3,232
3:03:16	164.4	0.918	81.3	5.064	15.31	49.3708	150,6	1.419	1.382	2.102	2.012	0.624	1.318	0.694	3.223
3:04:29	164.6	0.924	81.3	5.058	15.40	49.4284	150,8	1.419	1.382	2.102	2.015	0.627	1.321	0.694	3,211
3:05:42	165.2	0.930	81.3	5.052	15.50	49.4864	151,4	1,423	1.386	2.106	2.021	0.630	1.326	0.696	3.209
3:06:55	165.1	0.936	81.2	5,046	15.60	49.5456	151.3	1.420	1.383	2.103	2.021	0.633	1.327	0.694	3,194
3:08:08	165.2	0.942	81.0	5.040	15.70	49,6044	151,4	1.420	1.382	2.102	2.032	0.645	1,339	0.694	3,152
3:09:21	166.5	0.948	81.2	5.034	15.80	49.6633	152.7	1.430	1.392	2.112	2.030	0.632	1.331	0.699	3,211
3:10:35	166.7	0.954	81,2	5.028	15.91	49.7227	152.9	1.430	1.392	2.112	2.028	0.630	1.329	0.699	3,217
3:11:48	167.8	0.960	81,2		16.00	49.7815	154.0	1.438	1.400	2.120	2.036	0.630	1.333	0.703	3,230
3:13:01	167.6	0.966	81,2	5,016	16.11	49.8420	153.8	1.435	1.397	2.117	2.037	0.635	1.336	0.701	3,208
3:14:14	167.8	0.972	81,1	5.010	16.21	49.9013	154.0	1.435	1.396	2.116	2.041	0.639	1.340	0.701	3.192
3:15:25	167.6	0.978	81.1	5.004	16.30	49.9597	153.9	1.432	1.393	2.113	2.040	0.642	1.341	0,699	3.179
3:16:38	168.4	0.984	81.0	4.998	16.41	50,0202	154.7	1.438	1.398	2.118	2.051	0.647	1.349	0.702	3,169
3:17:49	168.7	0.990	81.0	4.992	16.50		154.9	1.438	1.398	2.118	2.055	0.651	1,353	0.702	3,158
3:19:02	169.2		80.8	4.986	16.60	50,1396	155.4	1.441	1.401	2.121	2.069	0.662	1.365	0.704	3.127
3:20:15	169.1	1.002	81.1	4.980	16.71	50,2010	155.3	1,439	1.399	2.119	2.048	0.644	1.346	0.702	3,180
3:21:26	169.8		81.1	4.974	16.80	50,2599	156.0	1.443	1.403	2.123	2.051	0.643	1.347	0.704	3.192
3:22:39	170.5		81.0	4.968	16,91	50,3211	156.8	1.449	1.408	2.128	2,060	0.646	1.353	0,707	3.187
3:23:52	170.7		81.0	4,962	17,01	50,3822	157.0	1.449	1.408	2.128	2.063	0.650	1,357	0.707	3.175

Consolidation Values Final Values Tested By KDG Project Number 175569069 Height 5.918 (in.) 15.032 (cm) Height 4.827 (ln.) Date 12-19-09 Test Number CU-28 Dia. avg. Press No. 1 Diameter 2.734 (in) 6.944 (cm) 3.173 (in) Data File ID 28 5.870 (in*) 7.909 (in²) 37.872 (cm²) Area Area avg. Panel No. В Lateral Pressure (psi) 30.0

Area .	5.670	. (111)	37.072	(011)		Alea avg.	7.909	(111.)		Panel No	В			essure (psi)	30.0
												Cha	amber Pressu	re - O ₃ (psi)	90
			Pore						Corrected						Effective
		Deflection	Pressure	Corrected			Corrected		Deviator				ρ'	q	Principal
Clock Time	Load	Dial Reading		Hieght	Strain	Corrected	Load	Deviator	Stress*	σ_1	σ,	σ_3	(σ _t '+σ ₃ ')/2	(o ₁ -o ₃)/2	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	Stress (tsf)	(tsf)	(Isf)	(tsf)	(tsf)	(lsf)	(lsf)	
															σ ₁ ' / σ ₃ '
0:00:00	12.7		60.1	5,918	0.00	37.8725	0.0	0.000	0.000	2.160	2,160	2.150	2.155	0.005	1.005
0:00:49	19.6	_" 0.018	60.3	5.912	0.10	37.9119	6,8	0.084	0.084	2.244	2,231	2.137	2.184	0.047	1.044
0:02:44	39.6	-0.012	61.7	5.906	0.20	37.9491	26.9	0.330	0.329	2.489	2.380	2.041	2.211	0.170	1.166
0:05:32	85.7	-0.006	66.6	5.900	0.30	37.9869	73.0	0.893	0.892	3.052	2.590	1,687	2,138	0.451	1,535
0:07:54	104.8		69.7	5.894	0.40	38.0251	92.1	1,126	1.125	3,285	2.596	1,461	2.028	0.567	1.777
0:10:24	117.3		72.2	5.889	0.50	38.0622	104.6	1.278	1.276	3.436	2.568	1,282	1.925	0.643	2.004
0:12:57	125.7	0.011	73.9	5.883	0.60	38.1004	113.0	1.379	1.377	3.537	2.548	1.161	1.854	0.694	2.195
0:15:18	132.3	0.017	75.0	5.877	0.70	38.1388	119.6	1.458	1.457	3.617	2.544	1.078	1.811	0.733	2.361
0:17:35	137.3	0.023	75.7	5.871	0.80	38.1780	124.6	1.518	1.516	3,676	2.553	1.027	1.790	0.763	2.486
0:19:54	141.9	0.029	76.7	5,865	0.90	38.2159	129.1	1.571	1.569	3,729	2.534	0.955	1.744	0.790	2.654
0:22:15	146.2		77.3	5,859	1.00	38.2539	133.5	1.622	1,620	3,780	2.547	0.917	1.732	0.815	2.777
0:24:32	149.9		77.7	5.853	1.10	38.2942	137.2	1.665	1.663	3,823	2.561	0.888	1.724	0.836	2.884
0:26:41	153.7	0.047	77.9	5.847	1.20	38.3311	140.9	1.710	1.707	3,867	2.586	0.869	1.728	0.858	2.975
0:28:57	157.1	0.053	78.3	5.841	1.30	38.3701	144.4	1.750	1.747	3,907	2.597	0.841	1.719	0.878	3.090
0:31:14	160.4	0.059	78.6	5.835	1.40	38.4088	147.7	1.788	1.785	3,945	2,615	0.821	1.718	0.897	3.187
0:33:25	163.3	0.064	78.7	5.830	1.50	38.4475	150.6	1.821	1.817	3.977	2.640	0.813	1.727	0.914	3.249
0:35:46	166.5		78.8	5,824	1.60	38,4872	153.8	1.858	1.854	4.014	2.669	0.805	1.737	0.932	3,316
0:38:00	169.7		78.7	5,818	1.70	38.5267	156.9	1.894	1.890	4.050	2.711	0,811	1.761	0.950	3.341
0:40:13	172.5	0.082	79.1	5.812	1.79	38.5646	159.8	1.927	1.922	4.082	2.716	0.784	1.750	0.966	3.463
0:42:28	175.3	880.0	79.1	5.806	1.89	38,6038	162.6	1.958	1.953	4.113	2.746	0.782	1.764	0.982	3,510
0:44:50	178.1	0.094	79.1	5.800	2.00	38.6444	165.3	1.989	1.984	4.144	2.776	0,782	1.779	0.997	3,550
0:47:02	180.6	0.100	79.1	5.794	2.09	38.6824	167.9	2.018	2.013	4.173	2.809	0.786	1.797	1,012	3.576
0:49:14	183.4		79.2	5.788	2.19		170.6	2.049	2.044		2.832	0,778	1.805	1.027	3.640
										4.204					3.696
0:51:27	186.3		79.3	5.782	2.29		173.6	2.082	2.077	4.237	2.861	0.774	1.817	1.043	
0;53:46	188.3	0.118	79.2	5.776	2.39	38.8017	175.6	2.104	2.098	4.258	2.886	0,778	1.832	1.054	3.708
0:56:03	190.7	0.123	79.1	5.771	2.49	38.8406	178.0	2.131	2.125	4.285	2.918	0.783	1.851	1.067	3.725
0:58:16	193.6	0.129	78.9	5.765	2.59	38.8804	180.8	2.163	2.156	4.316	2.965	0.799	1.882	1.083	3.713
1:00:32	195.7	0.135	79.2	5.759	2.69	38.9202	183.0	2,186	2.179	4.339	2.964	0.774	1.869	1.095	3.828
1:02:58	198.9		79.2	5.753	2.79	38.9609	186.2	2.222	2.215	4.375	3.006	0.781	1.894	1.113	3.849
1:05:16	201.5		79.1	5.747	2.89		188,8	2.250	2.243	4.403	3.039	0.785	1.912	1.127	3.870
1:07:35	203.9	0.153	78.9	5.741	2.99	39.0401	191.2	2.277	2.269	4.429	3.075	0.796	1.935	1.140	3.864
1:09:53	206.6	0.159	79.0	5.735	3.09	39.0803	193.9	2.307	2.299	4.459	3.101	0.792	1.947	1.155	3.915
1:12:12	208.5	0.165	79.0	5.729	3.19	39.1206	195.7	2.326	2.318	4.478	3.121	0.793	1.957	1.164	3.936
1:14:36	210.7	0.171	78.8	5.723	3.29	39.1610	198.0	2.351	2.343	4.503	3.156	0.803	1.980	1.176	3.930
1:16:57	213.5		78,7	5.717	3.39		200.7	2.381	2.372	4.532	3.193	0.810	2.001	1.191	3.941
													2.025	1.202	3.920
1:19:17	215.5		78,6	5.712	3.49		202.7	2.402	2.393	4.553	3,227	0.823			
1:21:39	217.3	0.188	78,7	5.706	3.59		204.5	2.421	2.412	4.572	3,236	0.813	2.024	1.211	3.978
1:24:02	220.0	0.194	78,6	5.700	3.69	39.3231	207.2	2.451	2.441	4.601	3,274	0.823	2.048	1.226	3.980
1:26:24	222.3	0.200	78,4	5.694	3.79	39.3639	209.5	2.475	2.466	4.626	3,307	0.832	2.069	1.238	3.977
1:28:44	224.3	0,206	78.2	5.688	3.89	39.4049	211.5	2.496	2.486	4.646	3,347	0.850	2.098	1.248	3.936
1:31:03	226.5		78.4	5.682	3.99		213.8	2.520	2.510	4.670	3,358	0.838	2.098	1.260	4.008
	229.1		78.3		4.09				2.538		3,392	0.844	2.118	1.274	4.020
1:33:23				5.676			216.4	2.548		4.698				1.283	4.009
1:35:46	230.9		78.2	5.670	4.19		218.1	2.566	2.555	4.715	3.418	0.853	2.135		
1:38:09	232.7	0.230	78.0	5.664	4.29		220.0	2.585	2.574	4.734	3,448	0.864	2.156	1.292	3,992
1:40:30	235,2	0.236	78.0	5.658	4.39	39.6102	222.4	2.611	2.600	4.760	3,472	0.862	2,167	1.305	4.026
1:42:53	237.2	0.242	78.0	5.653	4.49	39.6518	224.4	2.632	2.621	4.781	3,496	0.865	2.181	1.315	4,040
1:45:17	238.8		77.8	5.647	4.59		226.1	2.649	2.637	4.797	3.524	0.877	2,200	1.324	4.020
													2.219	1.333	4,011
1:47:39	240,7		77.7	5.641	4,69		228.0	2.668	2,656	4.816	3,552	0.886			
1:50:01	243.0		77.5	5.635	4.79		230.3	2.692	2.680	4.840	3,590	0.900	2.245	1.345	3,991
1:52:22	244.8	0.265	77.6	5.629	4,89	39.8175	232.1	2.711	2,698	4.858	3,601	0.892	2.246	1.354	4.036
1:54:43	246.5	0.271	77.5	5.623	4.99	39.8595	233.8	2.728	2.715	4.875	3.627	0.902	2,265	1.363	4,020
1:57:00	248.7		77.3	5.617	5.08	39.9014	236.0	2.750	2.737	4.897	3,659	0.911	2,285	1.374	4,015
1:59:17	250.6		77.2	5.611	5.18		237.9		2.756	4.916	3.691	0.925	2.308	1.383	3.991
												0.919	2.309	1.390	4.025
2:01:36	252.1		77.2	5.605	5.28		239.4	2.783	2.770	4.930	3.699				
2:03:52	253.8			5,600	5.38		241.1	2.800	2.787	4.947	3.723	0.926	2.325	1.398	4.019
2:06:06	255.9	0.300	77.0	5,594	5.48	40.0697	243.2	2.822	2,808	4.968	3.754	0.936	2.345	1.409	4,011
2:08:24	257.4	0.306	76,9	5.588	5.58	40.1123	244.7	2.837	2.823	4.983	3.778	0.945	2.362	1.416	3.997
2:10:42	259.2	0.312	76,8	5,582	5.68	40.1545	246.5	2.855	2.840	5,000	3.801	0.951	2.376	1.425	3.997
2:13:02	261,3		76,8	5.576	5.78		248.6		2.861	5.021	3.820	0.949	2.384	1.435	4.026
2:15:22			76,7	5.570	5.88		250.6		2,881	5.041	3.850	0.959	2.405	1,446	4.015
6,10,22	200,3	0,324	10,1	0.010	0.00	40.2334	200.0	2.050	2,001	V.V4 I	5.050	0,508		11110	11919

File: frm_20091207_cu_2 Sheet: Data-B Preparation Date: 1998

Revision Date: 1-2008

Consolidation Values Final Values Tested By _ KDG Height 5.918 (in.) 15.032 (cm) Height 4.827 (in.) Date Diameter 2.734 (in) 6.944 (cm) Dia. avg. 3,173 (in) Press No. 1 5.870 (in²) 37.872 (cm²) 7.909 (in²) Panel No.

ed 8y KDG Project Number 175569069
e 12-19-09 Test Number CU-28
ss No. 1 Data File ID 2B
el No. B Lateral Pressure (psi) 30.0
Chamber Pressure - 02 (psi) 90

•	····									-		Cha	amber Pressu	re - O ₃ (psi)	90
			Pore						Corrected						Effective
		Deflection	Pressure	Corrected		0	Corrected		Deviator				p'	Q	Principa!
Clock Time	Load	Dial Reading	-	Hieght	Strain	Corrected	Load (lbf)	Deviator	Stress*	σ ₁	σ ₁ '	σ ₃ '	(σ ₁ '+σ ₃ ')/2	(o ₁ -o ₃)/2	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)		Stress (tsf)	(tsf)	(tsf)	(tsf)	(lsf)	(Isf) 2,420	(tsf) 1,453	σ ₁ " / σ ₃ " 4.004
2:17:42 2:19:56	264.8 266.1	0.330 0.336	76.6 76.4	5.564 5.558	5.98 6.08	40.2822 40.3251	252.1 253.4	2.910 2.922	2.895 2.906	5.055 5.066	3.872 3.898	0,967 0,981	2,439	1,458	3.972
2:22:12	267.6	0,330	76.4	5,552	6.18	40.3676	254.8	2.935	2.900	5.080	3.906	0.976	2.441	1.465	4.002
2:24:35	269.3	0.348	76.4	5,546	6.28	40.4106	256.6	2.952	2.936	5.096	3.928	0.981	2,455	1.473	4.002
2:26:55	271.0	0.354	76.2	5,540	6.38	40,4541	258.2	2.968	2.952	5.112	3.952	0.990	2.471	1.481	3.992
2:29:09	272.6	0.359	76.1	5.535	6,48	40.4969	259.8	2.984	2.967	5.127	3.978	1,000	2.489	1.489	3.976
2:31:29	274.4	0.365	76.0	5,529	6.58	40.5399	261.7	3.002	2.985	5.145	4.002	1.006	2.504	1.498	3.977
2:33:51	275.6	0.371	76.1	5,523	6.68	40.5832	262.9	3.012	2.995	5.155	4.009	1.004	2,507	1.502	3.992
2:36:15	277.5		75.9	5,517	6.78	40.6269	264.8	3.031	3.014	5.174	4.039	1,015	2,527	1,512	3.979
2:38:38	278,8	0.383	75.8	5.511	6.88	40.6705	266.1	3.042	3.025	5.185	4.058	1.023	2.541	1.517	3.966
2:41:01	280,9	0,389	75.5	5,505	6.98	40.7137	268.2	3.063	3.045	5.205	4.096	1.041	2.568	1.528	3.936 3.980
2:43:23	282.4 283.7	0,395	75.7	5.499	7.08 7.18	40.7577	269.7	3.077	3.059	5.219	4.099	1.030	2,564 2,578	1.535 1.540	3.968
2:45:44 2:48:07	285.5	0.401 0.407	75.6 75.5	5.493 5.487	7.10	40.8014 40.8454	270.9 272.8	3,088 3,106	3.070 3.087	5.230 5.247	4.117 4.143	1.038 1.046	2.595	1.549	3.961
2:50:30	287.2		75,3	5.481	7,38	40.8896	274.5	3.121	3.103	5.263	4.143	1.056	2.613	1.556	3.946
2:52:49	288.4	0.418	75.3	5.476	7,48	40.9334	275.7	3.132	3.113	5.273	4.178	1.055	2.617	1.561	3,959
2:55:09	290.1	0,424	75.3	5.470	7.58	40.9773	277.4	3.148	3.129	5.289	4.196	1.057	2.626	1.569	3,970
2:57:33	291.7	0.430	75.2	5.464	7.68	41.0216	279.0	3.162	3.143	5.303	4.221	1.068	2.644	1.576	3.952
2:59:52	292.7	0.436	75.1	5.458	7.78	41.0661	280.0	3.170	3.150	5.310	4.236	1.076	2.656	1.580	3.937
3:02:16	293.9	0.442	74.8	5.452	7.88	41.1103	281.2	3.180	3.160	5.320	4.264	1.093	2.678	1.585	3.900
3:04:34	295.9		75.0	5.446	7.98	41.1548	283.2	3.200	3.180	5.340	4.270	1.080	2.675	1.595	3.952
3:07:00	297.3		74.9	5.440	8.08	41,1995	284.5	3.211	3.191	5.351	4.291	1.090	2.690	1.601	3.938
3:09:21	298.6		74.8	5.434	8.18		285.8	3.223	3.202	5.362	4.309	1.097	2.703	1.606	3.928
3:11:42	300.0		74.6	5.428	8.28		287.2	3.235	3.214	5,374	4.336	1.112	2.724 2.724	1.612 1.621	3.898 3.940
3:14:04 3:16:25	302.0 302.8		74.7 74.6	5,422 5,417	8.38 8.47	41.3342 41.3790	289.2 290.1	3,254 3,260	3.232 3.238	5,392 5,398	4.345 4.358	1,103	2.734	1,624	3,926
3:18:45	304.1	0.477	74.4	5,411	8,57	41.4241	291,3	3,200	3,248	5,408	4.380	1,110	2,751	1,629	3.906
3:21:09	306.0		74.3	5.405	8,67	41.4695	293,3	3,288	3,266	5,426	4.410	1,133	2.772	1,638	3.891
3:23:31	307.1		74.4	5.399	8.77	41.5146	294.3	3.297	3.274	5.434	4,411	1.126	2.768	1.642	3.917
3:25:53	307.9		74.3	5.393	8.87	41.5602	295.1	3,302	3.280	5.440	4.420	1.130	2.775	1.645	3.912
3:28:17	309.3		74.2	5.387	8.97	41.6066	296.5	3.314	3.291	5.451	4.441	1.139	2.790	1.651	3.898
3:30:38	311,0	0.513	74.0	5.381	9.07	41.6517	298.2	3.329	3.306	5.466	4.465	1.149	2.807	1.658	3.887
3:33:02	311.8	0,519	74,1	5.375	9.17	41.6978	299.0	3.335	3.311	5.471	4.467	1.145	2.806	1.661	3.900
3:35:20	312.8	0.525	74,0	5.369	9.27	41.7427	300.0	3.342	3.319	5.479	4.478	1.149	2,813	1,664	3,897
3:37:40	314.2		73.9	5.364	9.37	41.7887	301.5		3.331	5.491	4.500	1.159	2,829	1.671	3.884
3:40:01	315.2		73.8	5.358	9.47	41.8348	302.5		3.338	5.498	4.515	1.167	2.841	1.674	3.870
3:42:22	316.3		73.8	5.352	9.57	41.8808	303.6	3.371	3.347	5.507	4.523	1.166	2.845	1.678	3.878
3:44:39 3:46:57	317.8 319.4		73.8 73.7	5.346 5.340	9.67 9.77	41.9271 41.9737	305.1 306.7	3.383 3.397	3.359 3.373	5.519 5.533	4.536 4.558	1.167 1.175	2.852 2.867	1.685 1.691	3.886 3.879
3:49:17	320.5		73.6	5.334	9.87	42.0197	307.8		3.381	5.541	4.573	1.173	2.878	1.696	3.869
3;51;35	321.6		73.4	5.328	9.97	42.0664	308.9		3.389	5.549	4.596	1.198	2.897	1.699	3.838
3:53:54	323.5		73.5	5.322	10.07		310.8		3,406	5.566	4.602	1.185	2.894	1.708	3.882
3:56:13	324.7		73.4	5.316	10.17	42.1597	311.9	3.440	3.415	5.575	4.617	1,192	2.905	1.712	3.873
3:58:29	325.7	0.584	73,4	5.310	10.27	42.2069	313.0	3.448	3.422	5.582	4.631	1.198	2.915	1.716	3.864
4:00:46	327.1	0.590	73.1	5.305	10.37	42.2534	314.4	3.460	3.433	5.593	4.658	1.214	2.936	1.722	3.836
4:03:08	327.9	0,595	73,3	5.299	10.47		315.1	3.464	3.438	5.598	4.650	1.202	2.926	1.724	3.869
4:05:29	329.1		73,2	5.293	10.57		316.3		3.447	5.607	4.665	1.208	2.936	1.728	3.862
4:07:49	330.4		73.1	5,287	10.67		317.6		3,457	5.617	4.682	1.215	2,948	1,733	3.854
4:10:07	331.9			5,281	10.77		319.2		3.470	5.630	4.707	1.227	2,967	1,740	3.837
4:12:28	333.0			5,275	10.87		320.2		3.477	5.637	4.706	1.219	2,963 2,969	1.744 1.746	3.860 3.854
4:14:54 4:17:17	333,8 335.1		73.0 72.9	5.269 5.263	10.97 11.07		321.0 322.4		3.482 3.492	5.642 5.652	4.715 4.735	1.223	2,969	1.751	3.841
4:17:17	336.5			5.257	11.17		323.8		3,503	5,663	4.757	1,243	3.000	1.757	3.827
4:22:06	337.8			5.251	11.27		325.0		3.513	5,673	4.760	1,237	2,998	1.761	3.848
4:24:28	338.7			5.245	11.37		326.0		3.519	5,679	4.769	1,240	3.005	1.764	3.845
4:26:53	340.5		72.7	5.240	11.47		327.7		3.533	5.693	4.792	1.248	3.020	1,772	3.838
4:29:15	341.6		72.5	5.234	11.57	42.8252	328.9	3.571	3.542	5.702	4.810	1.258	3.034	1,776	3.823
4:31:39	342.2	0.666	72.6	5.228	11,66	42.8737	329.5	3.573	3.544	5.704	4.808	1.254	3.031	1.777	3.835
4:34:03	343.3			5.222	11.76		330.6		3.552	5.712	4.818	1.256	3,037	1.781	3.836
4:36:27	344.6	0.678	72,4	5.216	11.86	42.9706	331.9	3.592	3.562	5.722	4.836	1.264	3.050	1.786	3.825

Consolidation Values Final Values Height 5.918 (in.) 15.032 (cm) Height 4.827 (in.) Date 2.734 (in) 6.944 (cm) Dia, avg. 3.173 (in) Diameter Press No. 5.870 (in²) Area avg. 7.909 (ln²) Area 37.872 (cm²) Panel No.

 Tested By
 KDG
 Project Number
 175569069

 Date
 12-19-09
 Test Number
 CU-2B

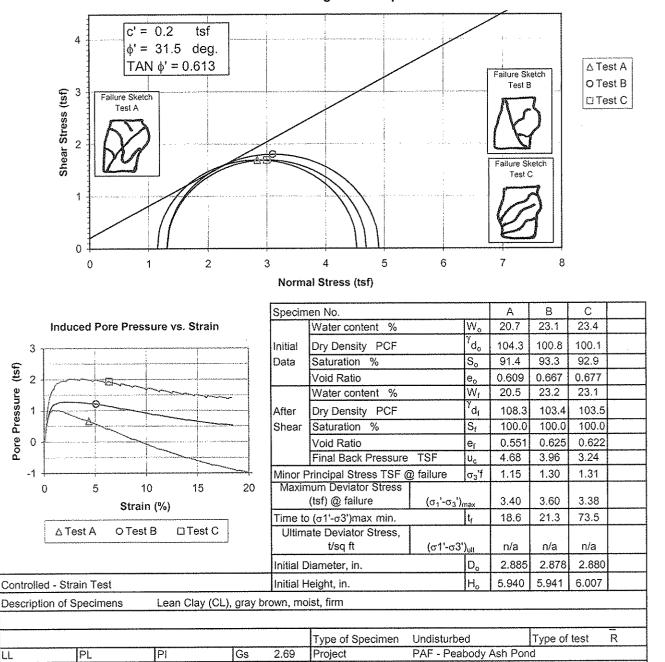
 Press No.
 1
 Data File ID
 2B

 Panel No.
 B
 Lateral Pressure (psi)
 30.0

 Chamber Pressure - G2 (psi)
 90

-						•				-		Cha	amber Pressu	ire · σ ₃ (psi)	90
			Pore						Corrected						Effective
		Deflection	Pressure	Corrected		Corrected	Corrected		Deviator				p'	q	Principal
Clock Time (min.)	Load (lbf)	Oial Reading (in.)	Reading (psi)	Hieght (in.)	Strain (%)	Corrected Area (cm ²)	Load (lbf)	Deviator Stress (tsf)	Stress* (tsf)	σ, (tsf)	ರ ₁ ' (lsf)	σ ₃ *	(\sigma_1'+\sigma_3')/2	(\sigma_1^\sigma_3)/2	Stress Ratio
												(lsf)	(lsf)	(tsf)	σ ₁ ' / σ ₃ '
4:38:51 4:41:15	345.2 345.9	0,684 0,690	72.3 72.4	5.210 5.204	11.96 12.06	43.0192 43.0683	332.5 333.2	3,594 3,598	3.564 3.567	5.724 5.727	4.847 4.848	1.273 1.270	3,060 3.059	1.787 1.789	3.808 3.816
4:43:38	347.9	0,696	72.4	5.198	12.16	43.0003	335.2	3,615	3.584	5.744	4.867	1.273	3.070	1.797	3.824
4:46:01	348.8	0.702	72.2	5.192	12.26	43,1659	336.1	3,620	3,589	5.749	4.879	1.279	3.079	1.800	3.814
4:48:24	349.6	0.708	72.1	5,186	12.36	43,2151	336.8	3.625	3.593	5.753	4.891	1.287	3.089	1.802	3,799
4:50:44	350.8	0.713	72.1	5.181	12.46	43.2644	338.0	3,633	3.602	5.762	4.900	1.288	3.094	1.806	3,804
4:53:09	352.4	0.719	72.1	5.175	12.56	43.3137	339,6	3.646	3.614	5.774	4.910	1.286	3.098	1.812	3,819
4:55:32	353.0	0.725	72.0	5.169	12.66	43,3633	340.2	3,648	3.616	5.776	4.920	1.293	3.107	1.813	3.804
4:57:55	353.6	0.731	71.9	5,163	12.76	43,4122	340.9	3,651	3.619	5.779	4.930	1,301	3.115	1.815	3.790
5:00:19	355.2		71.9	5.157	12.86	43,4619	342.4	3,664	3,631	5.791	4.947	1.306	3.126	1.821	3.789
5:02:45	356.3	0.743	71.9 71.8	5,151	12.96	43,5118	343.6	3,672	3.639	5.799	4.950	1,301	3.126	1.824	3,804 3.793
5:05:10 5:07:34	357.1 358.2	0.749 0.755	71.7	5,145 5,139	13,06 13,16	43,5618 43,6121	344.3 345.5		3,643 3,650	5,803 5,810	4,960 4,976	1.308 1.315	3.134 3.146	1.826 1.830	3.783
5:09:55	359.5		71.6	5,133	13.26	43,6617	346.7	3,693	3.659	5.819	4.993	1.324	3.159	1.835	3.771
5:12:21	360.2		71.7	5.128	13.36	43.7120	347,4	3,696	3.662	5.822	4.988	1.316	3.152	1.836	3.791
5:14:42	360.5		71.6	5.122	13,46	43.7629	347.8	3.695	3.661	5.821	4.995	1.323	3.159	1.836	3,774
5:17:06	362.2	0.778	71.5	5.116	13.56	43.8129	349.5	3.709	3.675	5.835	5.016	1.331	3.173	1.843	3.769
5:19:28	363.4	0.784	71.2	5.110	13,66	43.8635	350.7	3.717	3,683	5.843	5.047	1.354	3.200	1.847	3.728
5:21:50	364.4	0.790	71.5	5.104	13.76	43.9141	351.7	3.724	3.689	5.849	5.030	1.331	3.180	1.850	3.780
5:24:10	365.7	0.796	71.4	5.098	13.86	43.9651	353.0		3.698	5.858	5.047	1.338	3.192	1.854	3.771
5:26:30	367.2		71.3	5.092	13.96	44.0162	354.5		3.709	5.869	5.063	1.343	3.203	1.860	3.769
5:28:49	367.8		71.1	5.086	14.06	44.0669	355.1	3.747	3.711	5.871	5.081	1.360	3.221	1.861	3.736
5:31:13 5:33:29	368.6 370.3		71.3 71.2	5.080 5.074	14.16 14.26	44.1183 44.1694	365,9 357.6	3.751 3.764	3.715 3.728	5.875 5.888	5.071 5.090	1.346 1.352	3.209 3.221	1.863 1.869	3.767 3.766
5:35:52	371.1	0.826	71.2	5.068	14.36	44.2210	358.4	3.769	3.732	5,892	5.098	1.356	3.227	1.871	3.761
5:38:09	371.9		71.0	5.063	14.46	44.2728	359,1	3.772	3.735	5.895	5.116	1.370	3.243	1.873	3.734
5:40:26	373.3		71.1	5.057	14.56	44.3241	360.6		3,746	5,906	5.117	1.361	3.239	1.878	3.759
5:42:47	374.5	0.843	71.1	5.051	14.66	44,3762	361,8	3.791	3,754	5.914	5.127	1.363	3.245	1.882	3.762
5:45:07	375.1	0.849	71.0	5.045	14,76	44,4279	362.4	3.793	3.756	5,916	5.137	1,371	3.254	1.883	3.746
5:47:28	376.4	0.855	70.8	5.039	14.86	44,4802	363.6	3.801	3.764	5.924	5.155	1.381	3.268	1.887	3.733
5:49:46	378.0		70.9	5.033	14.95	44.5319	365.2		3.776	5.936	5.162	1,376	3.269	1.893	3.752
5:52:09	378.2		70.9	5.027	15.05	44.5841	365.5		3.774	5.934	5.161	1,377	3.269	1.892	3.748
5:54:33	378.9		70.8	5.021	15.15	44.6368	366.2		3.777	5.937	5.171	1.384	3.277	1.893	3.736
5;56;55 5;59;19	380.4 381.3		70.7 70.7	5.015 5.010	15.25 15.35	44.6894 44.7417	367.6 368.6		3.787 3.792	5.947 5.952	5.188 5.192	1.392	3.290 3.291	1.898 1.901	3.729 3.736
6:01:49	381.8		70.7	5.004	15.45	44,7952	369.1	3.831	3.792	5.952	5.192	1.390	3.291	1.901	3.736
6:04:12	383.2		70.6	4.998	15.55		370.5		3.802	5.962	5,210	1.398	3.304	1.906	3.727
6:06:41	384.6		70.5	4.992	15.65	44.9016	371.9		3,812	5.972	5.227	1,405	3.316	1.911	3.720
6:09:06	385.8	0.908	70.5	4.986	15.75	44.9535	373.1	3.859	3.820	5.980	5.232	1,403	3.317	1.915	3.730
6:11:32	386.4	0.914	70.5	4.980	15.85	45.0072	373.7	3.861	3.821	5.981	5.235	1,404	3.319	1.916	3.729
6:13:57	387.7	0.920	70.4	4.974	15.95	45.0602	375.0	3.870	3.829	5.989	5.249	1.410	3.330	1.920	3.724
6:16:25	388.7		70.3	4.968	16.05		376.0		3.835	5.995	5.262	1,417	3.339	1.922	3.714
6:18:51	389.8		70.3	4.962	16.15		377.0		3.841	6.001	5.266	1.415	3.341	1.925	3.720
6:21:17	390.5		70.3	4.956	16.25		377.8		3.844	6.004	5.270	1.416	3.343	1.927	3.721 3.715
6:23:41 6:26:07	391,9 393,1		70.2 70.1	4.950 4.945	16,35 16,45		379.2 380.4		3.853 3.860	6.013 6.020	5.286 5.301	1.423 1.431	3.354 3.366	1.932 1.935	3,706
6:28:30	393.5		70,1	4.939	16.55		380.8		3.860	6.020	5.301	1.431	3.366	1,935	3,705
6:30:52	394.7		70.1	4.933	16.65		382.0		3.867	6.027	5.306	1.429	3.368	1.938	3.713
6:33:21	396.0		70.1	4.927	16.75		383.3		3.875	6.035	5.321	1.436	3.379	1,943	3,705
6:35:45	396.5	0.973	70.0	4.921	16.85	45.5463	383.8	3.918	3.875	6.035	5.328	1.443	3.385	1.943	3,693
6:38:10	397.3	0.979	69.9	4.915	16.95	45.6013	384.6	3.922	3.879	6.039	5.334	1.445	3.390	1.945	3,691
6;40:35	398.8	0.985		4.909	17.05		386.1		3.889	6.049	5.341	1.442	3.392	1.949	3.703
6:43:05	400.1		69.9	4.903	17.15		387.3		3.897	6.057	5.356	1.449	3.403	1.954	3.696
6:45:29	400.3		69.8	4.897	17.25		387.6		3.895	6.055	5.360	1.456	3.408	1.952	3.683
6:47:53	401.6			4.892	17.35		388,9		3.903	6.063	5.372	1.459	3.416	1.956	3.681
6:50:22	403.3			4.886	17.45		390,5		3,914	6.074	5.379	1.455	3,417	1.962	3.697
6:52:44 6:55:07	403.8 404.4		69.7 69.6	4.880 4.874	17.55 17.65		391,0 391,7		3,914 3,916	6.074 6.076	5,386 5,395	1,462 1,469	3.424 3.432	1.962 1.963	3.685 3.671
6:57:33	404.4			4.868	17.75		391,7		3,916	6.078	5.395	1,469	3.442	1.969	3.673
6:59:57	407.0			4.862	17.85		394.3		3.932	6.092	5.410	1,468	3.439	1.971	3.685
2100101		1,000	55.0	1.000		. 3.0000	001.0	21011	0.002		Ţ.····	.,,,,,,			

Revision Date: 1-2008


Height Diameter Area	5,918 2,734 5,870	(in)	15.032 6.944 37.872	(cm)		Final \ Height Dia, avg. Area avg.	/alues 4.827 3.173 7.909	(in)		Tested By _ Date Press No Panel No	KDG 12-19-09 1 B		Lateral Pr	ject Number Fest Number Data File ID essure (psi)	175569069 CU-28 28 30.0
Clock Time (min.)	Load (lbf)	Deflection Dial Reading (in.)	Pore Pressure Reading (psi)	Corrected Hieght (in.)	Strain (%)	Corrected Area (cm²)	Corrected Load (lbf)	Deviator Stress (tsf)	Corrected Deviator Stress* (lsf)	σ ₁ (tsf)	σ ₁ '. (tsf)	σ ₃ ' (tsf)	p' (σ ₁ '+σ ₃ ')/2 (lsf)	(\alpha_1-\alpha_3)/2 ((\alpha_1-\alpha_3)/2 ((\alpha_1	90 Effective Principal Stress Ratio σ_1' / σ_3'
7:02:21	407.5	1.038	69.5	4.856	17.95		394.8		3.932		5.416	1.475	3,445	1,971	3.673
7:04:43	409,0	1.044	69.4	4.850	18.05	46.2114	396.3	3,988	3.942	6.102	5.434	1.482	3.458	1,976	3.667
7:07:05	410.6	1.050	69.2	4.844	18.14	46.2675	397.9	3,999	3,953	6.113	5.460	1.497	3.478	1,982	3.648
7:09:28	411.3	1.056	69.4	4.838	18.24	46.3243	398.5	4,000	3.954	6.114	5,445	1.481	3,463	1,982	3.677
7:11:49	412.5	1.062	69,3	4.833	18.34	46.3804	399.7	4.007	3.961	6.121	5.459	1.488	3,474	1.986	3.669
7:14:14	414.4	1,067	69,2	4.827	18.44	46.4371	401.6	4.022	3.975	6.135	5.480	1.495	3.488	1.993	3,666

Pore Pressure (tsf)

Remarks:

Failure Criterion: Maximum Effective Principal Stress Ratio

Effective Strength Envelope

Boring No.

Depth Elev.

Laboratory

3

12-19-09

Sample No.

Date

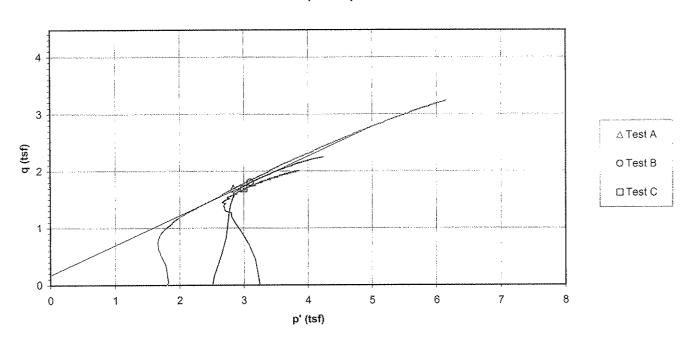
24.2'-24.7', 24.8'-25.3', 25.4'-25.9'

TRIAXIAL COMPRESSION TEST REPORT

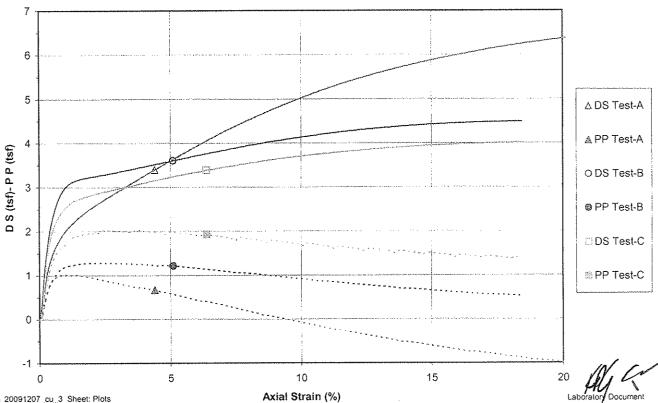
STN-18 (N2)

Project Sample ID PAF - Peabody Ash Pond

STN-18 (N2), 24.2'-24.7' & STN-18 (N2), 24.8'-25.3' & STN-18 (N2), 25.4'-25.9'


Failure Criterion:

Maximum Effective Principal Stress Ratio


 $\phi' = 31.5 \text{ deg.}$

Project No. 175569069 Test Number 0.20 tsf C' =

p' vs. q Plot

Deviator Stress and Induced Pore Pressure vs. Axial Strain

File: frm_20091207_cu_3 Sheet: Plots Preparation Date: 1998 Revision Date: 1-2008

Stantec Consulting Services Inc.

Prepared By: MW Approved BY: TLK

ASTM D4767-04

Project Name	DAE Por	abody Ash	Pond					Project Number	175569069
Sample Identification		V2), 24.2'-						Test Number	CU-3A
Visual Description			y brown, moist, fi	rm			· · · · · · · · · · · · · · · · · · ·	Prepared By	MC
Undisturbed			N2), 24.2'-24.8'					Date	12-9-2009
					_			MANAGE STATE OF THE STATE OF TH	
Specific Gravity	2.69	ASTM D8	54 Method A	Liquid Limit	N/A	Plastic Lir	mit N/A	Plasticity Index	N/A
	·····			Initia	al Specime	en Data			
Specimen Diameter (i	n.)	Specimer	Height (in.)		٧	'olumes (in³)		Specimen	
Top <u>2.879</u>	_	1	5.894		Sample	38.7469 (V _o)		Wet Weight (g)	1283.25
Middle 2.892	_	2	5.921		Solids	24.1149 (VS _o)		Dry Weight (g)	1063.08
Bottom 2.875	_	3	5.969		Water	13.4349 (Vw _o)		Wet Unit Weight (pcf)	126.2
Avg. 2.8820	(D ₀)	4	5.975		Voids	14.6320 (Vv _o)		Dry Unit Weight (pcf)	104.5
Area (in ²) 6.5235	(A _o)	Avg. (H_0)	5.9396	Degree of Sati	uration (%)	91.8 (S _o)			······
Moisture Content (%)	20.7	Final Trim	nmings		Void Ratio	0.607			
			***************************************		Saturatio	n			
Set Up & Saturated	: Wet	xx	Dry					Set up By	KDG
Back Pressure Satura	ited to:		65(psi)	Final Por	e Pressure	Parameter B	0.99	Date	12-10-09
								Panel Board Number	В
Height Readings (in.)		Back Pre	ssure Burette	Chamber	r Burette				
Initial 0.1408	_	Initial	16.77 (in.)	Initial	11.39	(in.)		Height (in.) <u>5.9386</u>	(H _s)
Final 0.1418	#* 	Final	13.05 (in.)	Final	9.3	(in.)		²) Method A <u>6.5213</u>	(A_s)
Change0.0010	_ (ΔH _o)	Change	(in.)	Change	-2.09	(in.)	Specimen '	Volume (in ³) 38.73	(Vs)
				(Consolida	tion	4,		
Height Readings (in.)		Back Pre	ssure Burette Re	adings	Chamber	Burette Readings		Pressures (psi)	
Initial 0.1418		Initial	1.17 (in.)		Initial	17.03 (in.)		Chamber 90	_
Final 0.1727	-	Final	4.05 (in.)		Final	14.02 (in.)		Back 65	
Change -0.0309	- (ΔH _c)	Change	-2.88 (in.)		Change	-3.01 (in.)		Lateral 25	(σ ₃)
Height (in.)	- 5.9077	(H _c)		V	olume (in³)	37.3936 (V _c)		•	
Area (in ³) Method B	6.3296	(A _c)		Volume -	Water (in³)	13.2787 (VWc)		t ₅₀ (min.) 0.738	
Diameter (in.)	2.8389	(D _c)		Water C	ontent (%)	20.5			
Dry Density (pcf)	108.3			Degree of Sat	uration (%)	100.0 (S _c)		Void Ratio 0.551	
**************************************	······································				After Te	st			
Final Measuren	nents		Final Moistu	re Content		Stresses (mem	brane corre	cted) at Failure (psi)	
Maximum Diameter	3.459	(in.)	Wet Weight (g)	1280.69)	Corre	cted Deviato	or3.40 σ _d (tsf)	
Wet weight (g)	1280.69	-	Dry Weight (g)	1063.08	_ }	Major f	Principal	4.53 σ ₁ (tsf)	
Corrected Diameter	3.435		Tare Weight (g)	0.00		Minor F	Principal	1.15 σ ₃ ' _f (tsf)	
		- ' '				Rate of Str	ain (% / min		
Youngs Modulu	s for Memt	orane (psi)	200			Axial Strain a	at Failure (%	4.40	
Mem	brane Thic	kness (in.)	0.012		Failure	e Criterion: Maxim	um Effective	Principal Stress Ratio	
Failure Sket	ch] _	Deviator Stress and I	nduced Pore Pres	sure vs. Strain	<u>-</u> .	ŗ	o' vs. q Plot	
	1	(£ 6]				8 - 6 - 6		to the second se	
n /		0 4 1 dd 2 1			Δ Το	est-A DS \$\int_{\mathbb{S}} 6	nation of the contract of the contract of the con-		est-A
		86 4 20 Q				est-A PP		200 200 200 200 200 200 200 200 200 200	
M	1	0.27) 5 10	15 20	25	0	2	4 6 8	
				ain %		U	<u></u>	d, (ret)	_
Comments									10/6

File: frm_20091207_cu_3 Sheet: Specimen-A Preparation Date: 1998 Revision Date: 1-2008

Comments:

ASTM D4767-04

Project Name	PAF - Pea	abody Ash	Pond					Project Number	175569069
Sample Identification	STN-18 (f							Test Number	CU-3B
Visual Description			y brown, moist,	firm				Prepared By	MC
Undisturbed	Source	STN-18 (1	V2), 24.8'-25.4'					Date _	12-9-2009
Specific Gravity	2.69	ASTM D8	54 Method A	Liquid Limi	t N/A	Plastic Lim	it N/A	Plasticity Index	N/A
				Initi	ial Specime	en Data			
Specimen Diameter (li	n.)	Specimer	Height (in.)		V	olumes (in3)		Specimen	
Top 2.885		1	5.948		Sample	38.6646 (V _o)		Wet Weight (g)	1258.47
Middle 2.875	-	2	5.945		Solids	23.1849 (VS _o)		Dry Weight (g)	1022.08
Bottom 2.876	_	3	5.927		Water	14.4244 (Vw _o)		Wet Unit Weight (pcf)	124.0
Avg. 2.8787	(D _o)	4	5.944		Voids	15.4797_(Vv _o)		Dry Unit Weight (pcf)	100.7
Area (in²) 6.5084	(A _o)	Avg. (H _o)	5.9408	Degree of Sat	turation (%)	93.2 (S _o)			······································
Moisture Content (%)	23.1	Final Trim	nmings		Void Ratio	0.668			
					Saturatio	on			
Set Up & Saturated:	Wet	XX	Dry					Set up By	KDG
Back Pressure Satura	ted to:		55 (psi) Final Po	re Pressure	Parameter B	0.99	Date	12-10-09
			100 (II) 1 (II) 1 (II)					Panel Board Number	С
Height Readings (in.)		Back Pre	ssure Burette	Chambe	er Burette				
Initial <u>0.1508</u>	_	Initial	16.03(in.)	Initial	11.89	_(in.)	•	Height (in.) 5.9427	(H _s)
Final 0.1489	_	Final	<u>11.11</u> (in.)	Final	10.7	_(in.)) Method A <u>6.5125</u>	
Change 0.0019	_ (∆H₀)	Change	-4.92 (in.)	Change	-1.19	_(in.)	Specimen \	/olume (in ³)38.70	(V_s)
				***************************************	Consolida	tion	· · · · · · · · · · · · · · · · · · ·		
Height Readings (in.)		Back Pre	ssure Burette F	Readings	Chamber	Burette Readings		Pressures (psi)	
Initial 0.1489		Initial	1.21 (in.)	1	Initial	17.47 (in.)		Chamber 90	
Final 0.206	-	Final	5.08 (in.))	Final	12.29 (in.)		Back 55	
Change -0.0571	_ (ΔH _c)	Change	-3.87 (in.))	Change	-5.18 (in.)		Lateral 35	(σ_3)
Height (in.)	5.8856	(H _c)		\	/olume (in³)	37.6667 (V _c)			
Area (in ³) Method B		-		Volume -	Water (in ³)	14.4817 (VWc)		D ₅₀ (min.) 0.626	
Diameter (in.)	2.8546	(D _c)		Water (Content (%)	23.2			
Dry Density (pcf)	103.4			Degree of Sa	turation (%)	100.0 (S _c)		Void Ratio 0.625	
					After Te	st			
Final Measuren	nents		Final Mois	ture Content		Stresses (memb	rane corre	cted) at Failure (psi)	
Maximum Diameter	3.382	(in.)	Wet Weight (g) 1259.4	1	Correc	ted Deviato	or 3.60 o _d (tsf)	
Wet weight (g)	1259.41	(WWf)	Dry Weight (g) 1022.0	8	Major P	rincipal	4.91_σ ₁ ' _f (tsf)	
Corrected Diameter	3.358	- 3 (in.)	Tare Weight (g) 0.0	0	Minor P	rincipal	1.30 σ ₃ ' ₁ (tsf)	
						Rate of Stra	in (% / min	.) 0.247	
Youngs Modulu	s for Memi	brane (psi)	200			Axial Strain a	t Failure (%	5.11	
Mem	brane Thic	kness (in.)	0.012		Failur	e Criterion: Maximu	m Effective	Principal Stress Ratio	
Failure Sket	ch		Deviator Stress an	d Induced Pore Pre	ssure vs. Strain		1	p' vs. q Plot	
	5	05 & PP (tsf)			● T	est-B DS (si) 2 1 0		07	est-B
	/	0	5 S	10 15 strain %	20	0	1	2 3 4 5 q'(1sf)	11/2

File: frm_20091207_cu_3 Sheet: Specimen-B Preparation Date: 1998 Revision Date: 1-2008

Comments:

ASTM D4767-04

Project Name	PAF - Pea	abody Ash	Pond					Project Number	175569069
ample Identi	ification STN-18 (I	N2), 25.4'-2	5.9'					Test Number	CU-3C
/isual Descrip	ption Lean Clay	(CL), brov	vn, moist, firm				,,,, ,, ,,	Prepared By	MC
Indisturbed	Source	STN-18 (N	/12), 25.4'-26.0'					_ Date _	12-9-2009
Specific Grav	rity <u>2.69</u>	ASTM D8	54 Method A	Liquid Limit	N/A	Plastic Limi	t N/A	Plasticity Index	N/A
				Initia	al Specim	en Data	······		······································
Specimen Dia	ameter (in.)	Specimen	Height (in.)		٧	olumes (in ³)		Specimen	
Гор	2.875	1	6.015		Sample	39.1288 (V _o)		Wet Weight (g)	1268.8
Aiddle	2.879	2	6.011		Solids	23.3264 (VS _o)		Dry Weight (g)	1028.3
Bottom —	2.886	3	5.999		Water	14.6797 (Vw _o)		Wet Unit Weight (pcf)	123
سس ۸vg.	2.8800 (D _o)	4	6.001		Voids	15.8024 (Vv _o)		Dry Unit Weight (pcf)	100
Area (in ²)	6.5144 (A _o)	Avg. (H _o)		Degree of Satu	ration (%)	92.9 (S _o)		, , , , ,	······································
Moisture Con		Final Trim		-	Void Ratio	0.677		w	······
	1011 (70)	-	50		Saturation				
0-411	ntunted Met	22	Dny					Set up By	CSM
Set Up & S		XX	Dry	Einal Boro	Droccisco	Parameter B	0.95	Date	12-11-09
Back Pressur	re Saturated to:		45(psi)	riilai roie	FIESSUIE	raiametei b	0.90		
		m	6	O la l a	m			Panel Board Number	Α
leight Readi			ssure Burette	Chamber		, ,	0		d L V
nitial	0.1987	Initial	16.84 (in.)	Initial	11.01	(in.)	•	Height (in.) 5.9952	-
Final	0.21	Final	11.98 (in.)	Final	10.04	_(in.)) Method A 6.4898	
Change _	-0.0113 (ΔH _o)	Change	(in.)	Change	-0.97	(in.)	specimen v	Volume (in ³) 38.91	(V _s)
		······································			Consolida	tion			
Height Readi	ings (in.)	Back Pres	ssure Burette Re	adings	Chamber	Burette Readings		Pressures (psi)	
initial	0.21	Initial	1.13(in.)		Initial	17.06 (in.)		Chamber 90	
Final	0.2803	Final	6.65 (in.)		Final	11.16 (in.)		Back45	
Change —	-0.0703 (ΔH _c)	Change	-5.52 (in.)		Change	-5.90 (in.)		Lateral 45	(σ_3)
Height (in.)	5.9249	(H _c)		V	olume (in ³)	37.8334 (V _c)			
Area (in³) N	Method B 6.3855	(A _c)		Volume - 1	Water (in ³)	14.5070 (VWc)		D ₅₀ (min.) 2.764	
Diameter (in.		-		Water C	ontent (%)	23.1			
Dry Density (***************************************	-		Degree of Sati	uration (%)	100.0 (S _c)		Void Ratio 0.622	
WATER-1-1-1					After Te	st	·······		
Final N	/leasurements		Final Moistu	ıre Content		Stresses (memb	rane correc	cted) at Failure (psi)	
Maximum Dia	ameter <u>3.403</u>	(in.)	Wet Weight (g)	1266.06		Correct	ed Deviato		
Wet weight (g) 1266.06	(WWf)	Dry Weight (g)	1028.32	-	Major Pr	incipal	4,70 σ ₁ ' ₁ (tsf)	
Corrected Di		(in.)	Tare Weight (g) 0.00		Minor Pr	incipal	1.31_σ ₃ * _f (tsf)	
	***************************************					Rate of Strai	n (% / min.	0.089	
Young	gs Modulus for Mem	brane (psi)	200			Axial Strain at	Failure (%) 6.40	
Ĭ	Membrane Thic	kness (in.)	0.012		Failur	e Criterion: Maximur	n Effective	Principal Stress Ratio	
Fail	lure Sketch	7	Deviator Stress and I	Induced Pore Press	sure vs. Strain		r	o' vs. q Plot	
		5 7				4			
Ý		(JS) dd % S			Пте	st-CDS & 3			ogl C
,	ノノ	B2 1/				st-C DS (£3) 2		<u> </u>	est-C
,	<i></i>	DX 4 717		1	Mary		to taken a secure 1975	A CONTRACTOR CONTRACTO	
(81 K			☐ Te	61-C PP			

File: frm_20091207_cu_3 Sheet: Specimen-C Preparation Date: 1998 Revision Date: 1-2008

Comments:

Laboratory Document Prepared By: MW Approved BY: TLK

q' (tsf)

Strain %

	Consolidation Value	ues	Final Va	lues	Tested By	KDG	Project Number	175569069
Height	5.908 (in.)	15.006 (cm)	Height	4.608 (in.)	Dale	12-11-09	Test Number	CU-3A
Diameter	2.839 (in)	7.211 (cm)	Dia. avg.	3.335 (in)	Press No.	1	Dala File ID	3A
Area	6.330 (ln°)	40.839 (cm²)	Area avg.	8.737 (in ^e)	Panel No.	В	Lateral Pressure (psi)	25.0
					•		Chamber Pressure - 03 (psi)	90
							-	·

Area	0,330	(411.)	40.039	(611)		Alea avg.	0.1.21	VII. 7		ranerno.				eagure (bar)	2010
												Cha	ımber Pressu	re org (psi)	90
		Deflection	Pore						Corrected						Effective
Clask		Dial		Corrected			Corrected	Deviator	Deviator				p'	q	Principal
Clock			Pressure		Otenia	Corrected	Load	Stress	Stress*	σ_1	σ_i	σ_3	(\sigma_3'+\sigma_3')/2	(\sigma_1 \cdot \sigma_3)/2	Stress Ratio
Time	Load	Reading	Reading	Hieght	Strain										
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(Isf)	(tsf)	α1' / α3'
0:00:00	11.8	-0.232	64.9	5.908	0.00	40.8386	0.0	0.000	0.000	1.800	1.800	1.808	1.804	-0,004	0.996
0:00:33	19.2	-0.226	65.1	5.902	0.10	40.8809	7.4	0.084	0.084	1.884	1.866	1.790	1.828	0.038	1.042
0:01:07	71.5	-0.220	69,8	5.896	0.20	40.9206	59.7	0.678	0.678	2.478	2.123	1.453	1.788	0.335	1.461
0:01:38	104.7	-0.214	73.6	5.890	0.30	40.9633	92.8	1.054	1.053	2.853	2.229	1,184	1,706	0.523	1.883
									1.280	3.080	2.305	1.033	1,669	0.636	2.232
0:02:04	124.8	-0.208	75.7	5.884	0.40	41.0034	112.9	1.281						0.724	2.550
0:02:31	140.4	-0.202	77.0	5.878	0.50	41.0444	128.6	1,457	1.455	3.255	2.382	0.934	1,658		
0:02:57	153,9	-0.196	77.9	5.872	0,60	41.0866	142.1	1,608	1.607	3.407	2.469	0.870	1.670	0.799	2.837
0:03:23	165.3	-0.190	78.4	5,866	0.70	41.1280	153.4	1.735	1.733	3.533	2.557	0.832	1.695	0.863	3.074
0:03:47	174.2	-0.184	78.8	5.860	0.80	41,1681	162.4	1.834	1.832	3.632	2.634	0.809	1.722	0.912	3.253
			78.9	5.854	0.90	41,2105	170.7	1.926	1,924	3,724	2.713	0.797	1.755	0.958	3.403
0:04:13													1.797	1.001	3.513
0:04:39	190.3	-0.172	78.9	5.848	1.00	41,2530	178.5	2.012	2.010	3,810	2.798	0.797			
0:05:04	196.4	-0.167	78.9	5.843	1.10	41.2942	184.6	2.078	2.076	3,876	2.869	0.801	1.835	1.034	3.581
0:05:30	202.6	-0.161	78,7	5.837	1.21	41,3368	190.7	2.146	2.143	3,943	2,945	0.811	1.878	1.067	3.634
0:05:54	207,5	-0.155	78,9	5.831	1.31	41.3786	195.7	2.199	2.196	3,996	2,988	0.800	1.894	1.094	3.735
0:06:20	213.1	-0.148	78.9	5.824	1.41	41.4222	201.3	2.259	2.256	4.056	3.050	0.802	1.926	1.124	3,803
			78.8	5.819	1.50	41.4619	206.0	2.311	2.307	4.107	3.108	0.809	1.959	1.150	3.842
0:06:45													1.989	1,173	3.876
0:07:10			78.7	5.813	1,60	41,5031	210.4	2.358	2.354	4.154	3.162	0.816			
0:07:34	226.6	-0.131	78.5	5.807	1.70	41.5454	214.8	2.404	2.400	4.200	3.217	0.825	2.021	1.196	3.899
0:07:59	231.0	-0.125	78.4	5.801	1.80	41.5884	219.2	2.450	2.446	4.246	3.273	0.835	2.054	1.219	3.921
0:08:24	235.3	-0.119	78,3	5.795	1.90	41,6302	223.5	2.496	2.492	4.292	3.329	0.845	2.087	1.242	3.938
0:08:49			78.1	5.789	2.01	41.6750	227.4	2.537	2.532	4.332	3.383	0.859	2.121	1.262	3.938
0:09:11	243,1		77.9	5.783	2.10		231.3	2.578	2.573	4.373	3,438	0.873	2.155	1.282	3.939
												0.888	2.189	1.301	3,928
0:09:34			77.7	5.778	2.20		234.8	2.615	2.609	4.409	3,490				3,928
0:10:00	250.7	-0,095	77.5	5.771	2,31	41.8038	238.9	2.657	2.651	4.451	3,546	0.903	2.225	1.322	
0:10:24	254.0	-0,090	77.3	5.766	2,40	41.8440	242.2	2,691	2.685	4.485	3.594	0.916	2.255	1.339	3.922
0:10:48	258.2	-0,084	77.1	5,760	2.50	41.8876	246.3	2.734	2.728	4.528	3.649	0.928	2.289	1.360	3,931
0:11:13				5.754	2.61	41.9309	250,1	2,773	2.767	4.567	3.699	0,940	2.320	1.379	3,934
			76.7	5.748	2.71		253.0	2.803	2.797	4.597	3,743	0.954	2.349	1.394	3,922
0:11:38													2.377	1.412	3.928
0:12:01	268.4	-0.066		5.742	2.80		256.5	2.839	2.832	4.632	3.789	0.965			
0:12:26	272.1	-0.060	76.4	5.736	2.91	42.0605	260.3	2.877	2.870	4.670	3.840	0.978	2.409	1,431	3.928
0:12:49	275.5	-0.054	76.3	5.730	3.00	42.1022	263.7	2.912	2.905	4.705	3,885	0.988	2.436	1.449	3.932
0:13:14	278.6	-0.049	76.1	5.725	3.10	42.1456	266.8	2.943	2.936	4.736	3.931	1.003	2.467	1.464	3.918
0:13:39				5,719	3.20	42.1896	270.4	2.980	2.972	4.772	3.982	1.018	2.500	1.482	3.913
				5.712	3,31		274.2	3.019	3.011	4.811	4.034	1.031	2.532	1.501	3.912
0:14:05													2.562	1.517	3,904
0:14:29			75.5	5,707	3.41		277.4	3.051	3.042	4.842	4.080	1.045			
0:14:53	293.2	-0,025	75.3	5.701	3.50	42.3210	281.3	3.091	3.083	4.883	4.131	1.057	2.594	1.537	3.910
0:15:17	296.6	-0.019	75.1	5.695	3.60	42.3644	284.8	3,126	3.117	4.917	4.181	1.072	2.626	1.555	3.902
0:15:43	300.3	-0.013	74.9	5.689	3.71	42,4103	288.5	3,163	3.154	4,954	4.236	1.090	2.663	1.573	3.886
0:16:08				5.683	3.81	42,4545	292.0	3,198	3,189	4.989	4.267	1.086	2.677	1,591	3.929
0:16:31			74,8	5.677	3.90		295.5	3.234	3.224	5.024	4.308	1.091	2.700	1,608	3.947
										5.059	4.353	1.102	2.727	1.626	3.951
0:16:57				5.671	4.01		299.1	3.269	3.259				2.756	1,643	3,952
0:17:22	314.4	0.011	74.5	5.665	4.10	42,5860	302.5	3.303	3.293	5.093	4.399	1.113			
0:17:47	317.7	0.017	74.4	5.659	4.20	42.6311	305.8	3.336	3.326	5.126	4.444	1.127	2.785	1.659	3.945
0:18:11	321.4	0.023	74.2	5.653	4.31	42.6763	309.6	3.373	3.363	5.163	4.490	1.135	2.813	1.678	3.956
0:18:36		0.028	74.1	5.648	4.40	42,7193	313.0	3.407	3,396	5.196	4.534	1.145	2.839	1.694	3.958
0:19:00					4.50		316.0		3,425	5.225	4.578	1.161	2.870	1.709	3.944
									3.462	5.262	4.630	1.176	2.903	1.727	3.938
0:19:24					4.60		319.8								3.931
0:19:49	335.2	0.046	73.5	5.630	4.71	42.8553	323.4		3.498	5.298	4.680	1,190	2.935	1.745	
0:20:14	338,6	0.052	73.3	5.624	4.80	42.8998	326.7	3,541	3.530	5.330	4.725	1.203	2,964	1.761	3.928
0:20:38		0.058	73.1	5.618	4,91	42.9450	330.0	3,573	3.561	5.361	4.768	1.214	2,991	1,777	3.927
0:21:03					5.01		333.7		3.597	5.397	4.817	1.228	3.022	1.795	3.924
					5.10		337.3		3.632		4.865	1,241	3,053	1.812	3.920
0;21:28													3.085	1.827	3.904
0:21:52					5.21		340.4		3.661	5.461	4.911	1.258			
0:22:17	355.7	0.082	72.3	5,594	5.31	43.1273	343.9	3,708	3.695	5.495	4.958	1.271	3.115	1.844	3.900
0:22:40	359.3	0,087	72.2	5.589	5.40	43,1709	347.4	3,742	3.729	5.529	5.004	1.282	3.143	1.861	3.902
0:23:06		0.093	72.0	5.583	5.50	43.2177	351.1	3.778	3.764	5,564	5.054	1.298	3.176	1.878	3,895
0:23:3					5.60		354.1		3.793		5.098	1.313	3.205	1.892	3.883
					5.70				3.828		5,147	1.327	3.237	1.910	3.879
0:23:56													3.271	1,928	3,872
0:24:2					5.81		361.6		3.864	5.664	5.200	1.343			
0:24:4	376.3	0.117	71.1	5.559	5.90	43.4010	364.4	3.905	3.890	5.690	5.241	1.358	3.299	1,941	3.859

KDG Project Number 175569069 Consolidation Values Final Values 12-11-09 Test Number CU-3A 4.608 (in.) Date Height 5.908 (in.) 15.006 (cm) Height Press No. Diameler 2.839 (in) 7.211 (cm) Dia. avg. 3.335 (in) Data File ID ЗА 8.737 (in²) 25.0 6.330 (in²) 40.839 (cm²) Panel No. В Lateral Pressure (psi) Area avg. Chamber Pressure - O3 (psi) 90

												Cha	amber Pressu	ire - 03 (psi)	90
		Deflection	Pore						Corrected						Effective
Clock		Dial	Pressure	Corrected			Corrected	Deviator	Devlator				þ,	Q	Principal
Time	Load	Reading	Reading	Hieght	Strain	Corrected	Load	Stress	Stress*	Q1	σ_1	α3	(01'+03')/2	$(\sigma_1 - \sigma_3)/2$	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(lsf)	(Isf)	σ ₁ ' / σ ₃ '
0:25:10	379.6	0.123	70.9	5.553	6.01	43,4481	367.8	3.936	3.921	5.721	5.290	1.376	3.333	1.957	3.844
0:25:33	383.3	0.129	70,7	5.547	6.10	43,4928	371.5	3,972	3,957	5.757	5.342	1.393	3.367	1.974	3.835
0:25:58	386.9	0.135	70.7	5.541	6.20	43.5394	375.0	4.005	3.990	5.790	5.375	1.393	3.384	1,991	3.858
0:26:23	390.1	0.141	70.6	5.535	6.31	43.5875	378.3	4,036	4.020	5.820	5.408	1.396	3.402	2.006	3.875
0:26:46	393.6	0.147	70.5	5.529	6.40	43.6328	381.8	4.069	4.053	5.853	5.450	1.404	3.427	2.023	3.881 3,880
0:27:11	397.4	0.153	70.3	5.523	6.51	43.6806	385.5	4.104	4.088	5.888	5.498	1.417	3.457 3.486	2.040 2.054	3.869
0:27:35	400.4	0.159	70.1	5.517	6.61	43.7275	388.5	4.132	4.116	5.916	5.540	1.432	3.400	2.069	3.865
0:27:59	403,7	0.164	69.9	5.512	6.70	43.7731	391.8	4.162	4.146	5.946	5.583	1.444	3.542	2.085	3,861
0:28:22	407.0	0.170	69.8	5.506	6,80	43.8201	395.2	4.194	4.177	5.977	5.627	1.457	3.571	2.102	3.862
0:28:47	410.8	0.176	69.6	5,500	6,90	43.8676 43.9149	398.9 401.8	4.229 4.255	4.212 4.238	6.012 6.038	5,673 5,715	1.469 1.485	3.600	2.115	3.848
0:29:12	413.7 417.5	0.182 0.188	69.4 69.2	5.494 5.488	7,01 7,10		401.6	4.291	4.274	6.074	5,715	1.499	3.632	2.133	3.845
0:29:35 0:30:00	420.5	0,194	69.0	5,482	7.20		408.7	4.318	4.301	6,101	5.808	1.515	3.661	2.147	3.834
0:30:25	423.1	0.200	68.7	5,476	7.30		411.3	4.341	4.323	6.123	5,846	1.531	3,689	2.158	3.818
0:30:49	426.5	0.206	68.5	5.470	7.40		414.6	4.371	4,353	6.153	5,891	1.545	3.718	2.173	3.812
0:30;49	429.8	0.212	68.4	5.464	7.50		418.0	4,402	4.384	6,184	5.931	1.555	3.743	2.188	3.814
0:31:39	433.3	0.218	68.2	5.458	7,61	44.2005	421.4	4.433	4,415	6,215	5,978	1.571	3.775	2.204	3.805
0:32:03	436.0	0.224	68.0	5.452	7,71	44,2493	424.2	4,458	4,439	6.239	6,017	1.586	3.802	2.216	3.794
0:32:27	438.8	0.229	67.8	5,447	7.80		427.0	4.483	4,464	6.264	6.055	1,599	3.827	2.228	3.786
0:32:51	442.1	0.235	67.6	5.441	7.90		430.3	4.512	4,493	6.293	6.099	1,614	3.856	2.242	3,779
0:33:17	445.5	0.241	67.4	5.435	8.01	44.3936	433.6	4.542	4.522	6.322	6,143	1,629	3.886	2.257	3.772
0:33:42	448.0	0,247	67.2	5.429	8,11	44 44 19	436.1	4.563	4.544	6.344	6.181	1.645	3.913	2.268	3.757
0:34:05	451.4	0,253	67.0	5.423	8.20		439.5	4.594	4.574	6.374	6,225	1,659	3.942	2.283	3.753
0:34:30	454.7	0,259	66.8	5.417	8.30		442.8	4.624	4,603	6.403	6,268	1.672	3,970	2.298	3,748
0:34:55	457.5	0.265	66.5	5.411	8.40	44,5852	445.7	4.648	4.628	6.428	6.309	1,689	3.999	2.310	3.736
0:35:19	460.1	0.271	66.3	5.405	8.51	44,6352	448.2	4.670	4.649	6.449	6.349	1,708	4.028	2.321	3.718
0:35:44	463.6	0.277	66.0	5.399	8.61	44.6850	451.7	4.701	4.680	6.480	6.399	1,727	4.063	2.336	3.706
0:36:09	466.9	0.283	66.0	5.393	8.71	44.7340	455.0	4.730	4.709	6.509	6,429	1.728	4.078	2.350	3.721
0:36:32	469.2	0.288	65.9	5.388	8.80	44.7812	457.3	4,749	4.728	6.528	6.455	1.735	4.095	2.360	3.720
0:36:57	472.6	0.294	65.8	5.382	8.91	44.8317	460.8	4.779	4.758	6.558	6.494	1,744	4.119	2.375	3.723
0:37:22	475.7	0.300	65.6	5.376	9.01	44.8815	463,9	4.806	4.784	6.584	6.533	1.756	4.144	2.388	3.720
0:37:46	478.4	0.306	65.5	5.370	9.11	44,9306	466.6	4.829	4.807	6.607	6.566	1.767	4.167	2.400	3.715
0:38:10	480.6	0.312	65,3	5.364	9.21	44.9789	468.7	4.846	4.824	6.624	6.597	1.781	4.189	2.408	3.704
0:38:35	484.4	0.318	65,1	5.358	9.31	45.0287	472.5	4.880	4.857	6.657	6.641	1.792	4.216	2.425	3.706
0:38:59	487.1	0.324	64.9	5,352	9.41	45.0784	475.3	4.903	4.880	6.680	6.676	1.804	4.240	2.436	3.700
0:39:24	489.5	0.330	64.7	5,346	9.51	45.1288	477.6	4.921	4.898	6.698	6.709	1.818	4.264	2.445	3,690
0:39:47	492.3	0.336	64.5	5.340	9.60		480.5	4.946	4.922	6.722	6.748	1.834	4.291	2.457	3,680
0:40:13	495,3			5.334	9.71		483.5	4.970	4.947	6.747	6.787	1.848	4.318	2.469	3.672
0:40:38	498,3			5.328	9.81		486.4	4,995	4.972	6.772	6.823	1.859	4.341	2.482	3.670
0:41:01	500.6		64.0	5.323	9.90		488.8	5,014	4.990	6.790	6.857	1.875	4.366	2.491	3,658
0:41:26	503.8		63.8	5.317	10.00		492.0	5.042	5.017	6.817	6.896	1.886	4.391	2.505	3.656
0:41:51	506.8			5.311	10.11		494.9	5.066	5.041	6.841	6.932	1.899	4.415	2.517	3.651
0:42:15	509.4		63.5	5,305	10.21		497.5	5.087	5.062	6.862	6.963	1.909	4.436	2.527	3.648
0:42:40	511.9		63.3	5,299	10.31		500.0	5.106	5.081	6.881	6.998	1.925	4.461	2.537	3.636
0:43:04	514.9			5.293	10.41		503.1	5.132	5.107	6.907	7.036	1.937	4.486	2.550	3.633 3.630
0:43:28	517.9			5.287	10.51		506.1	5,157	5,131	6.931	7.071	1.948	4.510	2.562 2.570	3,630
0:43:53	520.2			5,281	10.61		508.4	5.174	5,149 5,175	6,949 6,975	7.102	1.961	4.531 4.557	2.570	3.622
0:44:16	523.4			5.275	10.71		511.6	5.201 5.223	5,175 5,197	6,975 6.997	7.141 7.175	1.973 1.985	4.557 4,580	2.595	3.614
0:44:41	526.2			5.269	10.81		514.3 516.3	5,223	5.197	7.012	7.175	1.998	4,560	2.602	3,604
0:45:05	528.2			5.264 5.257	10.90 11.01		516.3 518.7	5.256	5,230	7.012	7.202	2.015	4.626	2.611	3,591
0:45:29 0:45:53	530.6 533.7			5.257 5.252	11.01		516.7 521.9	5.283	5,250	7.056	7.277	2.015	4.653	2.624	3.587
0:45:53	536.3			5.252	11.21		524.5	5.302	5.275	7.036	7.313	2.029	4.679	2.634	3.576
0:46:17	538.4			5.240	11.31		526.5	5.317	5.290	7.075	7.336	2.054	4.695	2.641	3,572 .
0:46:42	541.3			5.240	11.41		529.5	5.341	5.313	7,113	7.357	2.052	4.704	2.653	3,586
0:47:05	544.1			5.234	11.51			5.363	5.335	7.135	7.386	2.058	4.722	2,664	3,588
0:47:55	546.5			5.222	11.61		534.7	5.381	5.353	7.153	7.414	2.068	4.741	2,673	3.584
0:48:18				5.216	11.71		536.5	5.394	5.365	7.165	7.437	2.080	4.759	2,679	3.576
0:48:43	551.3			5.210	11.81		539.5	5,417	5.389	7.189	7.472	2,091	4.781	2.690	3.573
0:49:08				5.204	11.91		542.0	5.436	5,407	7.207	7.498	2.098	4.798	2.700	3.574
V. 70.00	500.0	J, L	00.0	5.25					*****						

		tion Values	,,,,,,	()		Final V		0- X		Tested By_	KDG			oject Number	1755690
Height	5.908		15.006			Height	4,608			Date	12-11-09			Test Number	CU-3A
Diameter	2.839		7.211			Dia avg.	3,335			Press No.	1			Data File ID	3A
Area	6.330	(in")	40.839	(cm.)		Area avg.	8.737	(m)		Panel No.	В	O 1-		ressure (psi)	25.0
												Chi	amber Press	ne - 03 (bsi)	90
		Deflection	Pore						Corrected						Effective
Clock		Dial	Pressure	Corrected		Corrected	Corrected	Deviator	Deviator		1	1	p'	q (\(2)	Principa
Time	Load	Reading	Reading	Hieght	Strain	Corrected	Load	Stress	Stress*	σ ₁	σ ₁ '	σ ₃ '	$(\sigma_1' + \sigma_3')/2$	(\sigma_1 \cdot \sigma_3)/2	Stress Ra
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	(tsf)	(lsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	σ_1'/σ_3'
0:49:32	555.6	0.478	60.7	5.198	12.01	46.4123	543.8	5.448	5.419		7.522	2.111	4.816	2.705	3.564
0:49:56	558.5	0.483	60.5	5.193	12,11	46.4635	546.7	5.471	5.441		7.555	2.121	4.838	2.717	3.562
0:50:20	561.0	0.489	60.3	5.187	12.21	46.5163	549.2	5.490	5.460		7.588	2.135	4.861	2.726	3.554
0:50:45	563.1	0.495	60.2	5.181	12,31	46.5701	551.3	5.504	5.474		7.613	2.147	4.880	2.733	3.547
0:51:08	565.1	0.501	60.0	5.175	12.40	46.6219	553.3	5.518	5.488		7.641	2.160	4.901	2.740	3.537
0;51:34	568.0	0.507	59.9	5.169	12.51	46.6777	556.2	5.541	5.510		7.673	2.171	4.922	2,751	3.535
0:51:58	570.2	0.513	59.7	5.163	12.61	46.7296	558.4	5.556	5.526		7.700	2.182	4.941	2.759	3.529
0:52:23	572.4	0.519	59.6	5.157	12.71	46,7830	560.6	5.572	5.541		7.725	2.192	4.959	2.766	3.524
0:52:47	574.8	0.525	59.4	5.151	12.81	46.8387	562.9	5.589	5.557		7.753	2.204	4.978	2.775	3.518
0:53:12	577.6	0.531	59.3	5.145	12,91	46.8919	565.8	5.610	5.579		7.784	2.213	4.999	2.786	3.517
0:53:35	579.5	0.537	59.1	5.139	13.01	46.9439	567.7	5.623	5.591		7.807	2.224	5.016	2.792	3.511
0:54:00	581.2	0.543	58.9	5,133	13.11	46.9997	569.4	5.633	5.601		7.831	2.238	5.035	2.797	3.499
0:54:23	584.1	0.548	58.8	5,128	13.21	47.0527	572.2	5.655	5.623		7.861	2.246	5.054	2.808	3.500
0:54:48	586.3	0.554	58.7	5,122	13.31	47.1063	574.5	5.671	5.638		7.886	2.256	5.071	2.815	3.496
0:55:13	588.3	0.560	58.5	5,116	13.41	47.1621	576.4	5.683	5.651		7.913	2.270	5.091	2.822	3.486
0:55:37	590.6	0.566	58.3	5,110	13.51	47.2172	578,8	5.700	5.667		7.940	2.281	5,110	2.830	3.482
0:56:02	593.2	0.572	58.2	5.104	13.61	47,2725	581.3	5.718	5.685		7.970	2.293	5.132	2.839	3.476
0:56:26	595.2	0.578	58.0	5.098	13.71	47,3253	583,4	5.732	5.699		7.997	2.306	5.152	2,845	3.468
0:56:50	596,8	0.584	57.7	5.092	13.81	47.3798	584.9	5.741	5.707		8.024	2.325	5,175	2.850	3,451
0:57:15	599.7	0,590	57.7	5.086	13.91	47.4354	587.9	5.763	5.729		8,046	2.325	5.185	2.861	3.461
0:57:40	601.8	0,596	57.7	5.080	14.01	47.4912	590.0	5.777	5,743		8,059	2.324	5.191	2.867	3.468
0:58:04	603.4	0,602		5.074	14.11	47.5474	591.6	5.786	5,751		8.074	2.330	5.202	2.872	3.465
0:58:28	605.9	0,608		5.068	14.21	47,6010	594.1	5,804	5,769		8,100	2.338	5.219	2.881	3.464
0:58:52	608.1	0.614	57,4	5.062	14.31	47,6576	596.3	5,818	5.783		8.121	2.346	5.233	2.888	3.462
0:59:17	610.2	0.619		5.057	14.41	47.7129	598.3	5,831	5,796		8.143	2.355	5.249	2.894	3.45
0:59:42	612.0	0.625		5.051	14.51	47.7697	600.2	5.842	5.807		8,164	2.365	5.264	2.900	3.450
1:00:05	614.6	0.631	57.1	5.045	14.61	47.8244	602.8		5.825		8.189	2.372	5.281	2.909	3.452
1:00:30	616.7	0.637	56.9	5.039	14.71	47.8817	604.8	5.874	5.838		8.213	2.383	5.298	2.915	3.44
1:00:55	618.6	0.643		5.033	14.81	47,9386	606.8	5.886	5.850		8.237	2.395	5.316	2.921	3,43
1:01:18	620.7	0.649		5.027	14.91	47,9940	8.806	5.899	5.863		8.260	2.405	5.333	2.927	3,43
1:01:43	622.9	0,655		5.021	15.01	48,0524	611.0	5.913	5.876		8.284	2.415	5.349	2.934	3.430
1:02:06	624.8	0.661	56,3	5.015	15.11	48.1062	612.9	5.925	5.888		8.305	2.425	5.365	2.940	3.42
1:02:31	626.5	0.667	56.2	5.009	15.21	48.1641	614.6		5.897		8.324	2.435	5.379	2,945	3,419
1:02:54	629.1	0.673		5.003	15.31	48.2191	617.3		5.915		8.353	2.446	5,399	2,954	3.415
1:03:19	631.1	0.679		4,997	15.41	48.2772			5.927		8.373	2.454	5.414	2,959	3.411
1:03:44	632.8	0.684		4.992	15.51	48.3342	620.9		5.936		8.392	2.464	5.428	2.964	3.406
1:04:08	634.8	0.690		4.986	15.61	48.3922	623.0	5.986	5.948		8.409	2.468	5,439	2.970	3.406
1:04:33	637.1	0.696	55.6	4,980	15.71	48.4503	625.2		5.962		8.433	2.478	5.455	2.977	3.40
1:04:58		0.702			15.81		627.0		5.972		8.451	2.487	5.469	2.982	3.39
1:05:22		0.708		4,968	15.91		628,4	6.017	5.979		8.469	2.498	5,483	2.985	3.39
1:05:47	642.6			4,962	16.01				5.993		8.493	2.508	5,500	2.993	3.38
1:06:12	645.0	0.720	55.0	4,956	16.11			6.048	6.008		8.520	2.519	5.519	3.000	3.38
1:06:36		0.726		4,950	16.21				6.018		8.538	2.528	5,533	3.005	3.37
1:07:01	648.1	0.732	54.6	4,944	16.31	48.7982	636.3	6.063	6.023	7.823	8.561	2.545	5.553	3.008	3.36
1:07:26	650.8	0.738	54.5	4.938	16.41	48.8555	638.9	6.081	6.041	7.841	8,590	2.556	5.573	3.017	3.360
1:07:49	652.8	0.743	54.5	4,933	16.51	48.9126	640.9	6.093	6.053	7.853	8.598	2.553	5.576	3.023	3.368

16.61

16.71

16.81

16.91

17,01

17.11

17.21

17.31

17.41

17.51

17.61

17.71

17.81

17.91

4,926

4.921

4,915

4.909

4.903

4.897

4,891

4.885

4.879

4.873

4.867

4,862

4.856

4.850

48.9736

49.0303

49.0889

49,1492

49,2086

49.2686

49.3274

49.3867

49,4454

49,5056

49.5663

49.6265

49.6877

49.7482

642.4

644.5

647.0

648.7

650.2

652.9

654.9

656.4

658.2

660.5

662.1

663.4

665.7

667.4

6.099

6.112

6.129

6.138

6.144

6.162

6.174

6.180

6.190

6.204

6.211

6.216

6.230

6.238

Preparation Date: 1998 Revision Date: 1-2008

1:08:15

1:08:38

1:09:03

1:09:28

1:09:52

1:10:17

1:10:42

1:11:06

1:11:30

1:11:54

1:12:19

1:12:44

1:13:08

1:13:33

654.2

656.3

658.8

660.6

662.0

664.8

666.7

668.2

670.0

672.3

673.9

675.3

677.6

679.2

0.750

0.755

0.761

0.767

0.773

0.779

0.785

0.791

0.797

0.803

0.809

0.814

0.820

0.826

54.5

54.5

54.4

54.3

54.2

54.1

54.0

53,9

53,7

53.6

53.5

53.3

53.2

53.1

7.859

7.888

7.896

7.903

7.921

7.932

7.938

7.947

7.961

7.969

7.973

7.987

7.994

6.059

6.072

6.088

6.096

6.103

6.121

6,132

6.138

6.147

6.161

6.169

6.173

6.187

6.194

5.578

5.591

5.603

5,615

5.627

5.640

5.653

5.667

5.682

5.697

5,709

5.722

5.737

5.747

2.553

2.559

2.563

2,570

2.579

2,584

2.591

2.602

2,612

2,620

2.628

2,639

2.647

2.654

8.604

8.643

8,659

8.674 8.697

8.715

8.733

8.752

8.774

8.789

8.805

8.826

8.840

3.025

3.032

3,040

3.044

3.047

3.056

3.062

3.065

3.070

3.077

3.080

3.083

3.090

3.093

3.370

3.370

3.372

3.369

3.363

3.366

3.364

3.356

3.351

3.348

3.344

3.336

3.334

Tested By __ KDG Project Number 175569069 Consolidation Values Final Values 12-11-09 CU-3A Date Test Number 4.608 (in.) Height 5.908 (in.) 15.006 (cm) Height Dia. avg. Diameter 2.839 (in) 7.211 (cm) 3.335 (in) Press No. Data File ID ЗА 8.737 (in²) 6.330 (in⁴) 25.0 40.839 (cm²) В Panel No. Lateral Pressure (psi) Area Area avg.

-							·····			18.011		Ch	amber Pressu	ire - σ ₃ (psi)	90
Clock Time (min.)	Load (lbf)	Deflection Dial Reading (in.)	Pore Pressure Reading (psi)	Corrected Hieght (in.)	Strain (%)	Corrected Area (cm²)	Corrected Load (lbf)	Deviator Stress (tsf)	Corrected Deviator Stress* (tsf)	σ ₁ (tsf)	σ ₁ ' (tsf)	σ ₃ ' (tsf)	p' (o ₁ '+o ₃ ')/2 (tsf)	q (σ ₁ -σ ₃)/2 (Isf)	Effective Principal Stress Ratio σ_1^+/σ_3^-
1:13:58	681.0	0.832	53.0	4.844	18,01	49.8085	669.1	6.247	6.203	8.003	8.857	2.662	5.759	3.098	. 3,327
1:14:22	682.4	0.838	52.9	4.838	18.11	49.8701	670.6	6.252	6.208	8.008	8.872	2.671	5.772	3.100	3,321
1:14:47	684.7	0.844	52.8	4.832	18,21	49.9313	672.9	6.266	6.222	8.022	8.892	2.678	5.785	3.107	3.320
1:15:12	686.4	0.850	52.7	4.826	18,31	49,9929	674.6	6.274	6.230	8.030	8.907	2.685	5.796	3.111	3.317
1:15:36	688.0	0.856	52.6	4.820	18,41	50.0542	676.1	6.281	6.236	8.036	8.923	2.695	5.809	3.114	3.312
1:16:00	689.9	0.862	52.4	4.814	18.51	50.1136	678.1	6.292	6.247	8.047	8.943	2.704	5.823	3.120	3.308
1:16:25	692,2	0.868	52.4	4.808	18.61	50.1749	680.4	6.305	6.260	8.060	8.963	2.710	5.837	3.126	3,307
1:16:49	693.6	0.873	52.2	4.803	18,71	50,2370	681.8	6.311	6.265	8.065	8.979	2.721	5.850	3.129	3.299
1:17:13	695,0	0.879	52.0	4.797	18,81	50.2986	683,2	6.316	6.270	8.070	8.997	2.735	5.866	3.131	3.289
1:17:37	697.2	0.885	51.8	4.791	18.91	50,3606	685.4	6.328	6.282	8.082	9.022	2.748	5.885	3.137	3.283
1:18:01	698.6	0.891	52.0	4.785	19.01	50.4228	686.8	6.333	6.287	8.087	9.017	2.737	5,877	3.140	3.294
1:18:25	699.9	0.897	51.9	4.779	19.11	50.4863	688,1	6.337	6.291	8.091	9.026	2.743	5.884	3.142	3.291
1:18:49	702.2	0.903	51.9	4.773	19.21	50,5478	690,3	6.350	6.304	8.104	9.042	2.746	5.894	3.148	3.292
1;19:13	703.9	0.909	51.8	4.767	19,31	50,6112	692,0	6.358	6.311	8.111	9.055	2.751	5.903	3.152	3.291
1:19:38	705.7	0,915	51.8	4.761	19.41	50,6738	693.9	6.367	6.320	8.120	9.066	2.753	5.909	3.156	3.293
1:20:02	707.3	0.921	51,6	4.755	19.51	50,7363	695.5	6.374	6.327	8.127	9.080	2.761	5.921	3.159	3,288
1:20:26	709.2	0.927	51.6	4.749	19.61	50.8003	697.4	6,383	6.336	8.136	9.094	2.767	5.931	3.164	3.287
1:20:51	711.1	0.933	51.5	4,743	19.71	50.8636	699.3	6,393	6,345	8.145	9.110	2.773	5.942	3.168	3.285
1:21:16	712.3	0.939	51.4	4.737	19,81	50.9277	700.5	6.396	6.348	8.148	9.123	2.783	5.953	3.170	3.278
1:21:39	714.4	0.944	51.3	4.732	19.91	50.9897	702.5	6.407	6.358	8.158	9,140	2.790	5.965	3.175	3.276
1:22:04	716.3	0.950	51.1	4.726	20.01	51.0540	704.5	6.416	6.368	8.168	9.157	2.798	5.978	3.180	3.273
1:22:28	717.8	0.956	51.1	4.720	20.11	51.1192	706.0	6.422	6.373	8.173	9.167	2.802	5.984	3.182	3.272
1:22:53	718.9	0.962	50.9	4.714	20.21	51.1833	707.0	6.424	6.374	8.174	9.180	2.814	5.997	3.183	3.263
1:23:18	721.3	0.968	50.9	4.708	20.31	51.2488	709.4	6.437	6.388	8,188	9,198	2.818	6.008	3.190	3,264
1:23:41	722.8	0.974	50.8	4.702	20.41	51.3098	710.9	6.443	6.393	8.193	9.208	2.823	6.015	3.193	3.262
1:24:06	723.7	0.980	50.7	4.696	20.51	51.3754	711.8	6.443	6,393	8.193	9.216	2.832	6.024	3.192	3.255
1:24:30	725.8	0.986	50.6	4.690	20.61	51.4402	713.9	6.454	6.404	8.204	9.234	2.838	6.036	3,198	3.253
1:24:55	728.1	0.992	50.5	4.684	20.71	51.5057	716.2	6.466	6.416	8,216	9.250	2.842	6.046	3.204	3.256
1:25:20	729.4	0.998	50.4	4.678	20.81	51.5706	717.5	6.470	6.419	8.219	9.262	2.850	6.056	3.206	3.249
1:25:44	730.4	1.004	50.3	4,672	20.91	51.6370	718.6	6.471	6.420	8,220	9.273	2.861	6.067	3.206	3.241
1:26:08	732.7	1.009	50.2	4.667	21.01	51.7006	720.8	6,483	6.432	8.232	9.290	2.865	6.078	3.212	3.242
1:26:32	734.1	1.015	50.1	4.661	21,11	51.7667	722.3	6,488	6.436	8.236	9,301	2.873	6.087	3.214	3.238
1:26:56	735.0	1.021	50.0	4,655	21.21	51,8312	723.1	6.488	6.436	8.236	9.309	2.881	6.095	3.214	3.231
1:27:21	736.8	1.027	49.8	4.649	21.31		725.0	6.496	6.444	8.244	9.327	2.891	6.109	3.218	3.226
1:27:45	738.9	1.033		4,643	21.41	51.9637	727.1	6.506	6.454	8.254	9.345	2.899	6.122	3.223	3.224
1:28:10	740.1	1.039	49.6	4.637	21.51	52,0318	728.3	6.508	6.456	8.256	9.354	2.906	6.130	3.224	3.219
1:28:34	741.0	1.045	49.7	4.631	21.61	52.0968	729.1	6.508	6.455	8.255	9.348	2.901	6.124	3.224	3.223
1:28:58	743.2	1,051	49.7	4.625	21.71	52.1626	731.4	6.520	6.467	8.267	9.359	2.900	6.129	3.230	3.228
1:29:23	745.0	1.057	49.7	4.619	21.81	52.2310	733,1	6.527	6.474	8.274	9.369	2.903	6.136	3.233	3.227
1:29:46	745,7	1.063	49.6	4.613	21,91	52,2959	733.9	6.526	6.472	8.272	9.372	2.908	6.140	3.232	3.223
1:30:10	747.6	1.068	49.6	4.608	22.01	52.3629	735.8	6.534	6.480	8.280	9.385	2,912	6.148	3.236	3.223

	Consolidation Value	ues	Final Va	lues
Height	5.886 (in.)	14.949 (cm)	Height	4.800 (in.)
Diameter	2.855 (in)	7.251 (cm)	Dia. avg.	3.260 (in)
Area	6.400 (in ²)	41.292 (cm²)	Area avg.	8,347 (in ^e)

Tested By	KDG	Project Number	175569069
Date	12-11-09	Test Number	CU-3B
Press No.	1	Data File ID	3B
Panel No.	C	Lateral Pressure (psi)	35.0
•		Chamber Pressure - 03 (psi)	90

2160	77.206					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	V.V.11	•` ′				Cha	amber Pressu	re - O ₃ (psi)	90	
										0					•	~ //
			Deflection	Pore Pressure	Corrected			Corrected		Corrected Deviator				ρ'	q	Effective Principal
Clock T	[ime	Load	Dial Reading		Hieght	Strain	Corrected	Load	Deviator	Stress*	σ_1	σ_1	G ³	(o ₁ '+o ₃ ')/2	(o ₁ -o ₃)/2	Stress Ratio
(min		(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	Stress (tsf)	(Isf)	(tsf)	(tsf)	(Isf)	(tsf)	(tsf)	σ ₁ ' / σ ₃ '
	0:00	13.2	-0.020	55.1	5.886	0.00	41.2918	0.0		0.000	2.520	2,520	2.516	2.518	0.002	1.001
	0:32	39.2	-0.014	56.8	5,879	0.10	41.3351	26.0		0.292	2.812	2.687	2,391	2.539	0.148	1,124
	1:07	110.7	-0.008	60.7	5.873	0.21	41,3775	97.5		1.095	3.615	3.207	2,109	2.658	0.549	1.521
	1:38	160.1	-0.001	63.6	5.867	0.31	41.4209	146.8		1,648	4.168	3.552	1,901	2.727	0.826	1.869
	2:05	192.4	0.004	65.8	5.862	0.40	41.4589	179.2		2.009	4.529	3.753	1.740	2,746	1.006	2.157
				67.5	5.856	0.50	41.5012	202.8		2.272	4.792	3.898	1.623	2.761	1,138	2.402
	2:31	216.1	0.010								5.030	4.031	1,518	2.774	1.257	2.656
	2:59	237.6	0.016	68.9	5,850	0.61	41.5433	224.4		2.510				2.788	1.342	2.856
	3:25	253.0	0.022	69,9	5.844	0.71	41.5854	239.8		2.680	5.200	4.129	1.446	2.800	1,412	3.035
	3:52	265.9	0.028	70.7	5.838	0.80	41.6269	252.7		2.821	5,341	4.212	1.388	2.813	1.464	3.170
	4:18	275.5	0.034	71.3	5,832	0.91	41.6693	262.2		2.924	5,444	4.277	1.349	2.823	1.501	3.170
	4:44	282.5	0.039	71.6	5,826	1.00		269.2		2.999	5.519	4.325	1.322		1.530	3.346
	5:10	287.9	0.045	71.9	5.821	1.10		274.6		3.056	5.576	4.364	1.304	2,834		3.399
	5:35	292.2	0.051	72.0	5.815	1.21	41.7962	278.9		3.100	5,620	4.398	1.294	2.846	1.552	
	5:59	295.3	0.057	72.2	5.809	1.31	41.8380	282.0		3.131	5,651	4.419	1.284	2.852	1.568	3.442
	6:24	297.3	0.063	72.4	5.803	1.41	41.8813	284.1		3.151	5,671	4.419	1.264	2.842	1.577	3.495
	6:49	299.5	0.069	72,6	5.797	1.51		286.2		3.171	5.691	4.430	1,256	2.843	1.587	3.529
0:0	7:13	301.3	0.075	72.7	5.791	1.61	41.9669	288.0		3.188	5.708	4.441	1,249	2.845	1.596	3.555
0:0	7:38	302.9	0.081	72.7	5,785	1.71	42.0084	289.6	3.206	3.202	5.722	4.449	1,244	2.847	1.603	3.577
0:0	8:04	304.0	0.087	72.8	5,779	1.81	42.0516	290.7	3.215	3.210	5.730	4.456	1,242	2.849	1.607	3.589
0:0	8:29	305.5	0.093	72.8	5.773	1,91	42.0976	292.3	3.228	3.224	5.744	4.466	1.239	2.853	1.614	3.605
0:0	8:52	306,9	0.098	72.8	5.767	2.01	42,1378	293.7	3.241	3.236	5.756	4.475	1,236	2.856	1.620	3.621
0:0	9:15	307.9	0.104	72.8	5.762	2.11	42.1800	294.7	3.249	3.244	5.764	4.483	1.236	2.860	1.624	3.627
0:0	9:39	309.1	0.110	72.8	5.756	2.21	42.2234	295.8	3.258	3.253	5.773	4.495	1.238	2,866	1.628	3.630
0:1	0:03	310,8	0.116	72.8	5.750	2.31	42.2674	297.6	3.274	3.268	5.788	4.507	1.236	2.871	1.636	3.648
0:1	0:28	311,9	0.122	72.8	5.744	2.41	42.3109	298.7	3.283	3.277	5.797	4.517	1.236	2,876	1.640	3.654
0:1	0:53	313.0	0.128	72.8	5.738	2.51	42.3548	299.7	3.290	3.284	5.804	4.526	1.238	2.882	1.644	3.656
0:1	1:17	314.5	0.134	72.8	5.732	2.61	42.4005	301.2	3.304	3.297	5.817	4.538	1.237	2,888	1.650	3.668
	1;41	316.2	0.140	72.8	5,726	2.71	42.4415	303.0	3.319	3.313	5,833	4.553	1.236	2,895	1.658	3.683
	2:06	317.2		72.8	5.720	2.81	42.4853	304.0	3.327	3.320	5,840	4,563	1.239	2.901	1.662	3.682
	2:30	318.3		72.8	5.714	2.91	42.5291	305.1	3.336	3.329	5,849	4.574	1,242	2.908	1.666	3.684
	2:55	320.3		72.8	5,708	3.01		307.1		3.347	5.867	4.592	1.242	2.917	1.675	3.698
	3:20	321.7	0.163	72.7	5.703	3.11		308.5		3.358	5,878	4.604	1.242	2.923	1.681	3.706
	3:44	322.8		72.7	5,697	3.21		309.5		3.366	5.886	4.614	1.244	2.929	1.685	3.708
	4:08	324.4		72.7	5.691	3,31		311.2		3.380	5.900	4.631	1,247	2.939	1.692	3.713
	4:34	325.9		72.6	5.685	3.41		312.7		3.393	5.913	4.646	1.250	2.948	1,698	3.718
	4:58	327.4		72.6	5.679	3.51		314.1		3.405	5.925	4.660	1.252	2.956	1,704	3.723
	5:22	328.4		72.6	5.673	3.61		315.2		3.413	5.933	4.672	1.256	2.964	1,708	3.720
	5:46	330.3		72.5	5.667	3.71		317.1		3.429	5.949	4.692	1.259	2.975	1.717	3.727
	6:11	332.2		72.5	5.661	3.81		319.0		3.446	5.966	4.710	1.260	2.985	1,725	3.738
	6:34	333.4		72.4	5.655	3.91		320.2		3.455	5.975	4.723	1.264	2.993	1.729	3.737
	6:58	334.8		72.4	5.649	4.01		321.5		3.466	5.986	4.738	1.268	3.003	1.735	3.736
	7:21	336,6			5.643	4.11		323.3		3.481	6.001	4.757	1.272	3,015	1.743	3.740
		338,1		72.3	5.637	4,22		324.8		3.494	6.014	4.775	1.278	3.026	1.749	3.737
	7:46	339,2		72.1	5,632	4.32		325.9		3.501	6.021	4.792	1.287	3.040	1.753	3.724
	8:10									3.517	6.037	4.813	1.292	3.053	1.761	3,725
	8:32	341.0			5.626	4.41						4.828	1.295	3.062	1,766	3.727
	8:56	342.4			5.620	4.51		329,2		3.529	6.049			3.059	1,770	3.745
	9:20	343.4			5.614	4.61		330,2		3.536	6.056	4.829	1.289	3.068	1,779	3.759
	9:43	345.5			5.608	4.71				3.553	6.073	4.847	1.289			
	20:08	347.2		72.1	5.602	4.82				3.568	6.088	4.863	1.292	3.078	1.786	3.765
	0:31	348.1			5.596	4.91				3,574	6.094	4.873	1.296	3.085	1,789	3.760
	0:56	349.8			5.590	5.02				3.587	6.107	4.892	1.301	3.097	1,796	3.760
	1:20	351.6		71.9	5.585	5.11				3.604	6.124	4.911	1.303	3.107	1,804	3.768
	1:45	353.0			5.578	5.22				3.614	6.134	4.926	1,309	3.118	1,809	3.764
0:2	2:10	354.6	0.293	71.7	5.573	5.32				3.627	6.147	4.946	1,315	3,130	1.815	3.762
0:2	2:34	356.0	0,299	71.6	5,567	5,42				3.637	6.157	4.963	1.322	3,143	1.821	3.754
0:2	2:58	358.0	0.305	71.6	5,561	5,52				3.654	6.174	4.984	1.326	3.155	1.829	3.758
0:2	23:23	358.9	0.311	71.5	5.555	5,62	43.7492	345.6	3.674	3,660	6.180	4,999	1.335	3.167	1.832	3.745
0:2	23:46	360.5	0.317	71.4	5.549	5.72	43.7952			3.673	6.193	5,018	1.341	3.179	1.839	3.743
0:2	4:11	362.5	0.323	71,3	5.543	5.82	43.8422	349.2	3.704	3.690	6,210	5,040	1.346	3.193	1,847	3,744
0:2	24:37	364.2	0.329	71.2	5.537	5.92	43.8894	351.0	3,718	3.704	6.224	5.058	1.351	3.204	1.854	3.745

Revision Date: 1-2008

	Consolidation Value	ues	Final Va	lues	Tested By	KDG	Project Number	175569069
Height	5,886 (in.)	14.949 (cm)	Height	4,800 (in.)	Date	12-11-09	Test Number	CU-3B
Diameter	2.855 (in)	7.251 (cm)	Dia, avg.	3,260 (in)	Press No.	1	Dala File ID	3B
Area	6,400 (in ²)	41.292 (cm²)	Area avg.	8,347 (in*)	Panel No.	C	Lateral Pressure (psi)	35.0
			<u></u>		•		Chamber Pressure - 03 (psi)	90

Area	6,400	(in-) 	41.292	(cm")		Area avg.	8,347	(IN-)	1	Panel No	C			essure (psi)	35.0
												Cha	amber Pressu	re - 03 (psi)	90
			Pore						Corrected						Ellantina
		Deflection	Pressure	Corrected			Corrected		Deviator				ρ'	q	Effective
Clast Time	Load	Dial Reading	Reading	Hieght	Strain	Corrected	Load	Deviator	Stress*	σ_i	σ ₁ '	O3	(\sigma_1'+\sigma_3')/2	(\sigma_1 - \sigma_3)/2	Principal Stress Ratio
Clock Time		_	-	-			(lbf)	Stress (tsf)	(tsf)	(tsf)	(tsf)	(tsf)			
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)								(Isf)	(Isf)	σ_1'/σ_3'
0:25:01	365,6	0.334	71.2	5.531	6.02	43.9361	352.3	3.729	3,714	6.234	5.075	1.357	3.216	1.859	3.740
0:25:25	367.1	0.340	71,1	5.526	6.12	43.9814	353.9	3.742	3.727	6.247	5.094	1,364	3.229	1.865	3.735
0:25:50	368.6	0.346	71.0	5.520	6,22	44.0289	355.4	3.753	3.738	6.258	5.112	1,370	3.241	1.871	3.732
0:26:14	370.3		70.9	5.514	6.32	44.0762	357.1	3.767	3.752	6.272	5.130	1,375	3,253	1.878	3.731
										6.279		1,385	3,266	1.882	3.718
0:26:39	371.5		70.8	5,508	6.42	44.1253	358.2	3.775	3.759		5.148				
0:27:02	373,3	0.364	70.7	5.502	6.52	44.1716	360.0	3.790	3.774	6.294	5.167	1,389	3.278	1.889	3.720
0:27:27	374,9	0.370	70.6	5.496	6.62	44.2189	361.7	3.804	3.788	6,308	5.185	1,394	3.290	1.896	3.720
0:27:50	376,2	0.376	70.6	5,490	6.72	44.2650	363.0	3.813	3.797	6.317	5.200	1,400	3,300	1.900	3.715
0:28:15	377.6		70.4	5.484	6.82	44.3129	364.4	3.824	3.807	6.327	5.219	1.408	3,314	1.906	3.706
0:28:40	379.5		70.4	5.478	6.92	44.3606	366.3	3.840	3.823	6.343	5.240	1.414	3.327	1.913	3,707
													3,338	1,918	3.702
0:29:04	380,8		70.3	5.472	7.02	44.4092	367.6	3.849	3.832	6.352	5.256	1,420			3.689
0:29:29	381.9	0.399	70.2	5.467	7.12	44,4564	368.7	3.856	3.839	6.359	5.272	1.429	3.350	1.921	
0:29:54	383.9	0.405	70.0	5.461	7.22	44.5056	370.6	3.872	3.855	6,375	5.298	1,440	3,369	1.929	3.680
0:30:18	385.6	0.411	70.0	5,455	7.32	44.5522	372.3	3.886	3,868	6,388	5.314	1,442	3,378	1.936	3.685
0:30:43	387.0	0.417	69.8	5,449	7.42	44.6006	373.7	3.897	3.879	6,399	5.333	1,451	3,392	1.941	3.675
0:31:08	388.0		69.7	5,443	7.52	44,6489	374.7	3.903	3.885	6.405	5.351	1,463	3,407	1,944	3.658
													3.417	1.953	3,668
0:31:32	390.1	0.429	69.7	5.437	7.62	44,6972	376.8		3.902	6.422	5.369	1,464			
0:31:57	391.7	0.435	69.7	5.431	7.72	44.7457	378.5	3.933	3.914	6.434	5.378	1.460	3,419	1.959	3,683
0:32:22	392.8	0.441	69.7	5.425	7.82	44.7963	379.5	3.940	3.921	6.441	5.388	1.464	3.426	1.962	3,681
0:32:45	394.4	0.446	69.6	5.419	7.92	44.8442	381.1	3.952	3.933	6.453	5.406	1.470	3.438	1,968	3,679
0:33:10	396.1		69.5	5.413	8.02	44.8934	382,9	3.966	3.947	6.467	5.426	1.475	3.451	1.975	3,677
	397.5		69.5	5.408	8.12	44.9422	384.2		3.956	6.476	5.439	1.480	3.459	1.980	3,676
0:33:33													3.469	1.982	3.667
0:33:57	398.4		69.3	5.402	8.22	44,9914	385.2		3.961	6.481	5.452	1.487			
0:34:20	400.2	0,470	69.3	5.396	8.32	45.0399	387,0	3.996	3.975	6,495	5.469	1.490	3,480	1.990	3.670
0:34:45	401.7	0,476	69.2	5.390	8.42	45.0898	388.4	4.006	3.985	6.506	5.487	1,498	3.493	1.995	3.663
0:35:08	402.7	0.482	69.1	5.384	8.52	45,1383	389.5	4.013	3.992	6.512	5.502	1.507	3.505	1.998	3.652
0:35:32	404.6		69.0	5.378	8.62	45,1886	391.3	4.027	4.006	6.526	5.523	1.513	3.518	2.005	3.650
			68.9	5.372	8.73	45.2393	393.1	4.041	4.020	6.540	5.541	1.518	3.530	2.012	3.651
0:35:56	406.4														
0:36:20	407.3	0.500	68,8	5.366	8.82	45.2883	394,0	4.046	4.024	6,544	5,554	1.526	3.540	2.014	3.640 /
0:36:43	408.7	0.505	68.7	5,360	8.92	45.3377	395.4	4.056	4.034	6.554	5,570	1.532	3.551	2.019	3,636
0:37:08	410.4	0.512	68.6	5,354	9.03	45.3892	397.2	4.069	4.047	6.567	5.589	1.538	3.563	2.025	3.634
0:37:31	411.6		68.5	5.349	9.12	45.4378	398.3	4.076	4.054	6.574	5.603	1,545	3.574	2.029	3.627
0:37:55	412,4		68.4	5.343	9.22	45.4869	399.2		4.058	6.578	5.615	1,554	3.585	2.031	3.614
															3.616
0:38:19	414.3		68.4	5.337	9.33	45.5395	401.1	4.095	4.073	6.593	5.634	1.558	3.596	2.038	
0:38:43	415.7	0,535	68.3	5.331	9.42	45.5880	402.5	4.105	4.082	6.602	5.650	1.564	3.607	2.043	3.612
0:39:07	416.9	0,541	68.2	5.325	9.52	45.6385	403.7	4.113	4.090	6.610	5.664	1.570	3.617	2.047	3.607
0:39:32	418.0	0.547	68.1	5.319	9.63	45,6915	404.8	4.119	4.096	6.616	5.678	1.579	3.628	2.050	3.597
0:39:56	419.7	0.553	68.0	5.313	9.73	45.7403	406.4	4.132	4.108	6.628	5.694	1.582	3.638	2.056	3.599
0:40:20	420.7		67.9	5.307	9.83	45.7910	407.5		4.114	6.634	5.707	1,589	3.648	2.059	3.591
0:40:45	422.1		67.8	5.301	9.93	45.8434	408.8		4.123	6.643	5.724	1.597	3.660	2.063	3.584
0:41:08	423,6		67.7	5.295	10.03	45,8938	410.4	4.158	4.134	6.654	5.740	1.603	3.671	2.069	3,581
0:41:33	424.7	0.576	67.7	5.290	10.13	45,9438	411.5	4.165	4.140	6.660	5.753	1.609	3.681	2.072	3,576
0:41:58	426.0	0.582	67.6	5.284	10.23	45,9951	412.8	4.173	4.149	6.669	5.768	1.615	3.691	2.076	3,570
0:42:22	427.2	0.588	67.5	5.278	10,33	46,0468	414.0	4.181	4.156	6.676	5.783	1.623	3.703	2.080	3.562
0:42:47	428.9		67.4	5.272	10.43		415.7		4.167	6.687	5.801	1.630	3.715	2.086	3,559
												1.639	3,728	2.089	3.549
0:43:12	430.1			5.266	10.53		416.9		4.175	6.695	5.817				
0:43:36	431.2	0.606	67.1	5.260	10.63		417.9		4.181	6.701	5.834	1.649	3,741	2.092	3.537
0:44:00	432.9	0.612	67.0	5.254	10.73	46.2555	419,7	4,219	4.193	6.713	5,855	1.658	3,756	2.098	3.532
0:44:25	434.2	0.618	67.0	5.248	10.83	46.3075	421.0	4.227	4.201	6.721	5,857	1.653	3,755	2.102	3.544
0:44:48	435.3		67.0	5.242	10.93		422.1	4,234	4.207	6.727	5.865	1.654	3,760	2.105	3.545
	436.4			5.236	11,03		423.1	4.239	4.213	6.733	5.876	1.659	3.768	2.108	3,541
0:45:13															
0:45:37	437.6		66.9	5,230	11,13		424.3		4.220	6.740	5.886	1.663	3.774	2.112	3.540
0:46:01	438.9	0.641	66.9	5.225	11.23	46.5144	425.7		4.228	6.748	5.898	1.667	3.783	2.116	3.539
0:46:26	439.9	0.647	66.8	5,219	11.33	46.5675	426.6	4.260	4.233	6.753	5.910	1.674	3.792	2.118	3,531
0:46:51	441.3	0.653	66,7	5.213	11.43	46.6205	428.1	4.270	4.242	6.762	5.925	1.679	3.802	2.123	3.529
0:47:15	442.7			5.207	11.53		429.5		4.251	6,771	5.939	1.684	3,811	2.127	3.527
					11.63		430.7		4.258	6.778	5.953	1.692	3.822	2.131	3.519
0:47:41	443.9		66,5	5.201											
0:48:05	444.6		66.4	5.195	11.73		431.3		4.259	6.779	5.964	1.701	3.832	2.131	3,506
0:48:29	446.3	0.676	66.3	5.189	11.83	46.8318	433.1	4.300	4.271	6.791	5.980	1.705	3.842	2.137	3.508
0:48:53	447.7	0.682	66.3	5.183	11.93	46.8853	434.4	4.309	4.280	6.800	5.992	1.709	3,851	2.142	3.506

3B

35.0

Consolidation Values Final Values 4.800 (in.) Height 5.886 (in.) 14.949 (cm) Height Diameter 2.855 (ln) 7.251 (cm) Dia. avg. 3.260 (in) 8.347 (in²) 6.400 (in") 41.292 (cm²) Area avg.

Project Number 175569069 Tested By KDG Date 12-11-09 Test Number CU-38 Press No. 1 Data File ID Panel No. Lateral Pressure (psi)

Alea	0.400		41.292	(0.11. /		Area avg.	0,347	,		ranei No				essure (psi)	30.0
												Cha	imber Pressu	re - σ ₃ (psi)	90
			Pore						Corrected						Effective
		Deflection	Pressure	Corrected			Corrected		Deviator				p*	q	Principal
Clock Time	Load	Dial Reading		Hieght	Strain	Corrected	Load	Deviator	Stress*	σ_1	σ_1	σ_3	$(\sigma_1' + \sigma_3')/2$	$(\sigma_1 - \sigma_3)/2$	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	Stress (tsf)	(lsf)	(tsf)	(lsf)	(tsf)	(lsf)	(tsf)	σ_1' / σ_3'
															3,494
0:49:18		0.688	66.2	5.177	12.03		434.8	4,308	4.278	6.798	5.999	1.717	3.858	2.141	
0:49:41	449.5	0.694	66.1	5.172	12.13	46.9927	436,3	4,317	4.288	6.808	6,014	1.723	3.869	2.146	3,491
0:50:06	451.0	0.700	66,0	5.165	12.24	47.0492	437.7	4,326	4.297	6.817	6.027	1.727	3.877	2.150	3.490
0:50:30	452.2	0.706	65.9	5.160	12.34	47.1019	438.9	4.333	4.303	6.823	6.040	1.733	3.886	2.153	3.485
0:50:53		0.712	65.8	5,154	12.44	47.1557	439.4	4,333	4.303	6.823	6.047	1.741	3,894	2.153	3.474
													3.904	2.169	3.474
0:51:17		0.718	65,8	5.148	12.53		441.0	4,344	4.314	6,834	6.062	1.745			
0:51:40			65.7	5,142	12.63		441.9	4.348	4.317	6.837	6,072	1.751	3,911	2,160	3.468
0:52:03	455.8	0.730	65,6	5,136	12.74	47.3182	442.5	4,349	4.318	6.838	6.079	1,757	3.918	2,161	3.460
0:52:27	457.4	0.736	65,5	5,130	12.84	47.3728	444.2	4,360	4.329	6.849	6.094	1,762	3.928	2.166	3.459
0:52:49	458.5	0.741	65,5	5.124	12.93	47.4251	445.2	4,366	4,334	6.854	6.104	1.766	3,935	2,169	3.456
0:53:12			65,4	5.118	13.03		446.1	4.368	4,337	6,857	6.113	1,772	3.943	2,170	3.449
0:53:36			65.3	5.112	13.14		447.2	4.375	4,343	6.863	6.124	1.777	3.950	2.173	3.446
														2.177	3.444
0:53:59		0.759	65.3	5.107	13.23		448,5	4.382	4,350	6,870	6.135	1.781	3.958		
0:54:24	462.5	0.765	65.2	5.101	13.34	47.6454	449.3	4.385	4,353	6.873	6.144	1.788	3.966	2.178	3.437
0.54:47	463.1	0.771	65.1	5.095	13.43	47.7003	449.9	4.386	4.353	6,873	6.153	1.796	3.974	2.178	3.426
0:55:12	465,0	0.777	65.0	5.089	13.54	47.7574	451.8	4.399	4.366	6.886	6.168	1.799	3.983	2.185	3.429
0:55:35			64.9	5.083	13.63	47,8106	452.2	4.398	4.365	6.885	6,175	1.806	3.990	2.184	3.419
0:56:00		0.789	64.8	5.077	13,74		453.2	4.402	4.369	6.889	6.187	1.814	4.000	2.186	3.410
													4.013	2.190	3.403
0:56:24		0.795	64.7	5.071	13.84		454.5	4.410	4.377	6.897	6.203	1.823			
0:56:48	3 469.0	0.801	64.6	5.065	13.94		455.7	4.417	4.383	6.903	6.215	1.828	4.021	2.193	3.400
0:57:12	2 469,5	0.806	64.7	5.059	14.04	48.0337	456.2	4.417	4.383	6.903	6.208	1.821	4.014	2.193	3,408
0:57:36	470.4	0.812	64.6	5.054	14.14	48,0904	457.2	4.421	4.386	6.906	6.216	1.825	4.021	2.195	3.405
0:58:01	472.1	0.818	64.6	5.047	14.24	48,1477	458.9	4.432	4.397	6.917	6.227	1.826	4.026	2.200	3,411
0:58:26			64.6	5.042	14,34	48,2045	459.6	4.433	4.399	6.919	6.231	1.829	4.030	2.201	3,407
0:58:49			64.5	5.036	14,44		460.1	4.433	4.398	6.918	6.236	1.835	4.036	2.201	3,399
0:59:14			64.5	5.030	14.54		461.3	4.440	4.405	6.925	6.247	1.839	4.043	2.204	3.397
0:59:38	3 475.8	0.842	64.4	5.024	14.64		462,6	4.447	4.411	6.931	6.256	1.841	4.049	2.207	3,398
1:00:03	3 476,3	0.848	64.3	5.018	14.74	48,4319	463.1	4.446	4.411	6.931	6.263	1.849	4.056	2.207	3,388
1:00:25	5 477,4	0.853	64.2	5.012	14.84	48,4853	464.1	4.451	4.415	6.935	6.274	1.855	4.065	2.210	3,382
1:00:50		0.860	64.2	5.006	14.94	48,5442	465,6	4.460	4.424	6.944	6.286	1.859	4.073	2.214	3.382
1:01:14			64.1	5.000	15.04		466,2		4.424	6.944	6.292	1.864	4.078	2.214	3.376
							466.5		4.422		6.296	1.870	4.083	2.213	3.366
1:01:38			64.0	4.995	15.14			4.459		6.942					
1:02:02			64.0	4.989	15.24		468.0		4.430	6.950	6.308	1.874	4.091	2.217	3.366
1:02:27	7 482.1	0.883	63,9	4.983	15.34	48.7748	468.8	4.470	4.433	6.953	6.314	1.878	4.096	2.218	3.362
1:02:52	2 482.8	0.889	63.9	4.977	15.44	48.8324	469.6	4.472	4,434	6.954	6.320	1.882	4.101	2.219	3.358
1:03:16	3 483.7	0.895	63,8	4.971	15.54	48.8902	470.4	4.474	4,437	6.957	6.330	1.890	4.110	2.220	3.349
1:03:41		0.901	63,7	4.965	15.64	48.9476	471.8	4.482	4,444	6.964	6.340	1.892	4.116	2.224	3.351
1:04:06			63,7	4,959	15.74		472.4	4.483	4,445	6.965	6.345	1.896	4.121	2.224	3.346
								4.486	4,448	6.968	6.353	1.901	4.127	2.226	3.342
1:04:3			63,6	4.953	15.84		473.4								
1:04:56			63,5	4.947	15.94		474.0		4,449	6.969	6.360	1.908	4.134	2.226	3.333
1:05:20	0 488,4	0.925	63.5	4.941	16.04	49.1828	475.2	4.493	4.454	6,974	6.367	1.910	4.139	2.229	3.334
1:05:40	3 488.9	0.930	63.4	4.935	16.14	49.2403	475.6	4,492	4.453	6,973	6,371	1.914	4,143	2.228	3.328
1:06:08	8 489.2	0.936	63.3	4.930	16.24	49.2999	476.0	4.490	4,450	6.970	6.375	1.921	4.148	2.227	3.319
1:06:31			63.3	4.924	16,34		477.6	4.500	4.460	6,980	6.387	1.924	4.156	2.232	3.320
1:06:5			63.2	4.918	16.44		478.5		4,462	6,982	6,392	1.926	4.159	2.233	3,319
														2,232	3.311
1:07:19			63.2	4.912	16,54		478.9		4.461	6.981	6,396	1.932	4.164		
1:07:40	3 493.2	0.960	63.1	4,906	16,64		479.9	4.505	4.465	6.985	6,405	1.937	4.171	2.234	3,307
1:08:01	7 494.1	0.966	63,0	4,900	16.74	49.5959	480.9	4.509	4.468	6.988	6.413	1,941	4.177	2.236	3,304
1:08:30	0 494.6	0.972	63.0	4.894	16.84	49.6550	481.4	4.508	4.467	6.987	6,417	1,946	4.181	2,235	3,297
1:08:5				4.888	16.95		482.0		4.468	6,988	6,425	1,954	4,189	2.236	3.289
1:09:10				4.883	17.04		483.3		4,474	6.994	6,437	1,959	4.198	2,239	3.285
							484.0			6.994	6,439	1.961	4.200	2.239	3.284
1:09:4				4.876	17.15				4.474						
1:10:0				4.871	17.24		484.4		4.473	6.993	6.433	1.957	4.195	2.238	3.287
1:10:2	6 498.9	1.001	62.8	4.865	17.35	49,9573	485.6	4.520	4.478	6.998	6.438	1.956	4.197	2.241	3.291
1:10:4	9 499.4	1.007	62.8	4.859	17.44	50,0162	486.2	4.520	4.478	6.998	6.439	1.957	4.198	2.241	3,290
1;11;1	4 499,9	1.013	62.8	4.853	17.55	50,0790	486.7	4.519	4.476	6.996	6.442	1.962	4.202	2.240	3.284
1:11:3				4.847	17.65		487.7		4.480	7.000	6.448	1.964	4.206	2.242	3.283
1:12:0				4,841	17,74		488.5		4.482	7.002	6.452	1.966	4.209	2.243	3.282
				4,835	17.85		489.1		4.481	7.002	6.454	1,969	4.212	2.242	3.277
1:12:2			62.6												
1;12:4	9 503,1	1.037	62.6	4.829	17.95	50.3244	489.8	4.526	4.483	7.003	6.462	1.976	4.219	2.243	3.271

Consolidation Values					Final Values					Tested By	KDG		Pro	ject Number	175569069
Height	5.886	(in.)	14,949	(cm)		Height	4.800	(in.)		Dale	12-11-09		1	est Number	CU-3B
Diameter	2.855	(in)	7,251	(cm)		Dia. avg.	3.260	(In)		Press No.	1			Data File ID	3B
Area	6.400	(in ^e)	41.292	(cm²)		Area avg.	8,347	(in ^e)		Panel No.	C		Lateral Pr	essure (psi)	35.0
•		•				•		•		-		Cha	amber Pressu	re - σ ₃ (psi)	90
			Pore						Corrected						Effective
		Deflection	Pressure	Corrected			Corrected		Devlator				ρ,	q	Principal
Clock Time	Load	Dial Reading	Reading	Hieght	Strain	Corrected	Load	Deviator	Stress*	σ_1	σ ₁ '	σ_3	(\sigma_1'+\sigma_3')/2	(a ₁ -a ₃)/2	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	Stress (tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(Isf)	(tsf)	σ_1 / σ_3
1:13:13	504.0	1.043	62.5	4.823	18.05	50.3864	490.8	4,529	4,486	7,006	6,468	1,979	4.223	2.245	3.269
1:13:37	504.7	1.048	62,5	4.818	18.15	50.4460	491.5	4.530	4.486	7.006	6,471	1,981	4.226	2.245	3,267
1:14:00	505.0	1,054	62.4	4.812	18.25	50.5073	491.7	4.527	4.483	7,003	6.475	1,988	4.231	2.243	3.257
1:14:25	505.9	1,060	62.3	4.806	18.35	50.5707	492.6	4.530	4.485	7.005	6.480	1.991	4.236	2.244	3.254
1:14:49	506.3	1.066	62.3	4.800	18.45	50.6329	493.1	4.529	4.484	7.004	6.484	1.996	4.240	2.244	3.248

	Consolidation Value	ies	Final Va	lues
Height	5.925 (in.)	15.049 (cm)	Height	4.835 (in.)
Diameter	2.851 (in)	7.243 (cm)	Dia. avg.	3.272 (in)
Area	6.386 (in*)	41.199 (cm²)	Area avg.	8.408 (in")

Tested By	KDG	Project Number	175569069
Date	12-14-09	Test Number	CU-3C
Press No.	1	Data File ID	3C
Panel No.	A	Lateral Pressure (psi)	45.0
	·····	Chamber Pressure - σ ₂ (osi)	90

								•''				Cha	amber Pressu	re - σ ₃ (psi)	90
			Coro						Carrantad					• • • •	F/(4): -
		Deflection	Pore Pressure	Corrected			Corrected		Corrected Deviator				p'	q	Effective Principal
Clock Time	Load	Dial Reading	Reading	Hieght	Strain	Corrected	Load	Deviator	Stress*	σ_1	σ_1	Q3,	(\sigma_1'+\sigma_3')/2	(01-03)/2	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	Stress (tsf)	(tsf)	(tsf)	(tsf)	(Isf)	(lsf)	(tsf)	σ ₁ ' / σ ₃ '
0:00:00	13.2	-0.021	45.1	5,925	0.00	41.1992	0.0	0.000	0,000	3,240	3.240	3.236	3.238	0.002	1.001
0:00:57	17.3	-0.015	45.2	5,919	0.11	41.2431	4.1	0.046	0.046	3.286	3.276	3.226	3.251	0.025	1.016
0:02:47	92.5	-0.009	52.0	5.913	0.20	41,2823	79.4	0.894	0.893	4.133	3.632	2.734	3.183	0.449	1.328
0:04:16	139.8	-0.004	57.1	5.907	0.30	41.3233	126.6		1.424	4.664	3.797	2.369	3.083	0.714	1.603
0:05:40	169.9	0.003	60.7	5.901	0.40	41.3659	156.7	1.762	1.761	5.001	3.876	2.111	2.993	0.882	1.836
0:06:53	190.1	0.008	63.1	5.895	0.50	41.4062	176.9		1.985	5.225	3.924	1.935	2.930	0.995	2.028
0:08:05	205.2	0.014	65,1	5.889	0.60	41.4488	192.0		2.152	5.392	3.953	1.796	2.875	1.078	2.201
0:09:18	217.1	0.020	66.4	5.883	0.70	41.4902	203.9		2.284	5.524	3.987	1.698	2.842	1.144	2.347
0:10:26	226.3	0.026	67.5	5.878	0.80	41.5313	213.1	2.386	2.384	5.624	4.012	1.623	2.817	1.194	2.471
0:11:35	233.5	0.032	68.1	5.871	0.90	41.5740	220.3		2,462	5.702	4.041	1.575	2.808	1.233	2.566
0:12:47	240.1	0.038	68.6	5.865	1.00	41.6165	226.9		2,533	5.773	4.080	1.543	2.812	1.269	2.645
0:13:55	245,4	0.044	70.1	5.860	1.10	41.6587	232.2		2,589	5.829	4.026	1.433	2.729	1.297	2.810
0:15:05	249.5	0.050	70.7	5.854	1.20	41.7000	236.4	2.636	2,633	5.873	4.025	1.389	2.707	1.318	2.899
0:16:14	253.8	0.056	71.1	5.848	1.30	41.7414	240.6		2,677	5.917	4.045	1.364	2.704	1.341	2.967
0:17:22	256.5	0.062	71.3	5.842	1.40	41.7854	243.4	2.708	2,705	5.945	4.057	1.348	2.703	1.354	3.009
0:18:34	259.1	0.068	71.5	5.836	1.50	41.8285	245.9		2.730	5.970	4.069	1.335	2.702	1,367	3.049
	260.9	0.003	71.7	5.830	1.60		247.7	2.751	2.747	5.987	4.069	1.317	2.693	1.376	3.089
0:19:38 0:20:46	263.2	0.073	71.7	5.824	1,70		250.0		2.770	6.010	4.077	1.303	2.690	1.387	3.129
				5.818	1.80	41.9111	250.0		2.770	6.030	4.077	1.298	2.695	1.397	3.153
0:21:55	265.3	0.085	72.0				252.2 253.6		2.803		4.100		2.696	1.404	3.172
0:23:00	266.8		72.1	5,812	1.90	41.9979				6.043		1.292	2.696	1.413	3.203
0:24:04	268.7	0.097	72.2	5,806	2.00	42.0395	255,5		2.821	6.061	4.108	1.283	2.706	1.422	3.214
0:25:15	270.6		72.2	5,800	2.10		257.5		2.840 2.851	6.080 6.091	4.128	1.284	2.721	1.428	3.208
0:26:20	272.0	0.109	72.0	5,795	2.20		258.8				4.149	1.293	2.694	1.435	3.280
0:27:24	273.6		72.5	5,789	2.30	42.1685	260.4		2.866	6.106	4.130	1.259	2.672	1,444	3.350
0:28:32	275.5		72.9	5.783	2.40		262.3		2.883	6.123	4.116	1.229	2.667	1.450	3.384
0:29:37	276.9		73.1	5,777	2.50		263.7		2.896	6.136	4.117	1.217	2.681	1.457	3,380
0:30:45	278.4	0.133	73.0	5,771	2.60		265.2		2.909	6.149	4.137	1.224	2.693	1.464	3.382
0:31:52			72.9	5,765	2.70	42.3425	266.9		2.924	6.164	4.157	1.229	2.692	1.471	3.410
0:32:57	281.7	0.144	73.0	5.759	2.80	42.3851	268.5		2.939	6.179	4.164	1.221	2.702	1,477	3,412
0:34:04	283.0		73.0	5.753	2.90		269.9		2.950	6.190	4.180	1.225	2.716	1.483	3,407
0:35:11	284.4	0.156	72.9	5.747	3.00		271.2		2.962	6.202	4.199	1.232	2.725	1.491	3.417
0:36:18			72.9	5.741	3.10		273.0		2.979	6.219	4.217	1,234	2.733	1.498	3.425
0:37:25	287.7	0.168	72.8	5.735	3.20		274.5		2.991	6.231	4.231	1.235	2,744	1.501	3.415
0:38:32			72.7	5.730	3.30		275.4		2.998	6.238	4.245	1.243	2.758	1.510	3.420
0:39:43			72.7	5.723	3.40		277.3		3.016	6.256	4.268	1,248	2.787	1.516	3.384
0:40:52			72.3	5.718	3.50		278.7		3.027	6.267	4.303	1.272	2.755	1.522	3.471
0:42:01	293,4		72.9	5.712	3.60		280.3		3.041	6.281	4.277	1.232	2.745	1.530	3.520
0:43:10	295,2		73.1	5.706	3.70		282.0		3.057	6,297	4.275	1.214	2.748	1.539	3.546
0:44:18			73.2	5.700	3.80		283.9		3.073	6,313	4.286	1.209	2.767	1.546	3,533
0:45:27	298.8		73.0	5.694	3.90		285,6		3.089	6.329	4.314	1.221	2.779	1 551	3.527
0:46:34	300.0		72.9	5.688	4.00		286.8		3.098	6.338	4.330	1.228	2.794	1.557	3.518
0:47:42			72.8	5.682	4.10		288.2		3.110	6.350	4.351	1.237	2.805	1.565	3.524
0:48:51	303.2		72.8	5.676	4.20		290,0		3,126	6.366	4.370	1.240	2.819	1.571	3,516
0:49:58			72.7	5.670	4.30		291.4		3.137	6,377	4.390	1.248	2.829	1.576	3.514
0:51:05			72,6	5.664	4.40		292.7		3.147	6.387	4.405	1.253		1.582	3.509
0:52:15			72.5	5.658	4.50		294.2		3,160	6.400	4,425	1.261	2.843		3.520
0:53:20			72.5	5.653	4.60		295.7		3,173	6.413	4,438	1.261	2.850	1.589	
0:54:28			72.2	5.646	4.70		297.2		3,185	6.425	4.469	1.279	2.874	1.595 1.599	3.494 3.454
0:55:34			71.9	5.641	4.80		298.3		3,194	6.434	4,501	1.303	2.902		
0:56:41			72.2	5.635	4.90		300.2		3.210	6.450	4.499	1.284	2.891	1.607	3.503
0:57:49			72.6	5.629	5.00		301.7		3,223	6.463	4.479	1.252	2.865	1.614	3.579
0:58:56			72.6	5.623	5.10		303,0		3.233	6.473	4.487	1.250	2.869	1,619	3.589
1:00:02			72.5	5.617	5.20		304.6		3.247	6.487	4.513	1.262	2.888	1.626	3.576
1:01:10			72.4	5,611	5.30		306.3		3.262	6.502	4.534	1.269	2.902	1,633	3.574
1:02:18			72.2	5.605	5.40		307.4		3.269	6.509	4,552	1.279	2.916	1.637	3.559
1:03:25			72.2	5.599	5.50		308.8		3.281	6.521	4.569	1,284	2.927	1,642	3.557
1:04:31			72.0	5.593	5.60		310.8		3,298	6.538	4,597	1,294	2.945	1.651	3.552
1:05:39			71,9	5,587	5.70		311.8		3.305	6.545	4,611	1,303	2.957	1.654	3.540
1:06:47			71,8	5,581	5.80		312.8		3.312	6.552	4.628	1,311	2.970	1.658	3.529
1:07:55	327.5	0.328	71,7	5.576	5.90	43.7809	314.3	3.339	3.324	6.564	4.648	1.320	2.984	1.664	3.522

Final Values Consolidation Values 15.049 (cm) Height 4.835 (in.) 5.925 (in.) Height 2.851 (in) 7.243 (cm) 3.272 (in) Diameter Dia. avg. 6.386 (in⁴) 41.199 (cm²) 8.408 (in²) Area Area avg.

 Tested By
 KDG
 Project Number
 175569069

 Date
 12-14-09
 Test Number
 CU-3C

 Press No.
 1
 Data File ID
 3C

 Panel No.
 A
 Lateral Pressure (psi)
 45.0

 Chamber Pressure - σ γ (psi)
 90

-						_		•				Che	amber Pressu	re - σ ₃ (psi)	90
			Pore						Corrected						Effective
		Deflection	Pressure	Corrected			Corrected		Deviator				ρ,	q	Principal
Clock Time	Load	Dial Reading	Reading	Hieght	Strain	Corrected	Load	Deviator	Stress*	σ_1	σ_1	α^3 ,	(\sigma_1'+\sigma_3')/2	$(\sigma_1 - \sigma_3)/2$	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	Stress (Isf)	(tsf)	(Isf)	(Isf)	(tsf)	(Isf)	(tsf)	σ_1'/σ_3'
1:09:01	329.1	0.334	71.5	5.570	6,00	43.8271	315.9	3.352	3.338	6,578	4.671	1.329	3.000	1.671	3.514
1:10:11	330,0	0.340	71.1	5,564	6.10	43.8740	316.8	3,358	3.343	6,583	4.705	1.358	3.031	1.674	3.465
1:11:18	331,3	0.346	71.6	5.558	6.20	43,9207	318.1	3.368	3,353	6.593	4.682	1.325	3.004	1.679	3.534
1:12:25	333.4	0.352	71.8	5.552	6.30	43.9676	320.2	3.387	3.372	6,612	4,684	1.309	2.996	1.688	3.580
1:13:32	335.0	0.358	71.8	5.546	6.40	44.0140	321.8	3.400	3.384	6.624	4.696	1.307	3.001	1.694	3.592
1:14:38	336.0	0.364	71.6	5.540	6.50	44.0616	322.8	3.407	3.391	6.631	4.718	1.322	3.020	1.698	3.568
1:15:44	337.2	0.369	71.5	5,534	6.59	44.1079	324.0	3.416	3.400	6.640	4.736	1.332	3.034	1.702	3.555
1:16:50	338.7	0.375	71.4	5.528	6.69	44.1552	325.5	3.428	3.412	6,652	4.755	1.339	3.047	1.708	3.550
1:17:58	339.9	0.381	71.3	5.522	6.80	44.2028	326.7	3.437	3.420	6,660	4.773	1.349	3.061	1.712	3.539
1:19:05	341.2	0.387	71.1	5.516	6.90	44.2505	328.1	3.447	3.431	6,671	4.794	1.359	3.077	1.717	3.527
1:20:09	343.0	0.393	71,1	5.510	6.99	44.2977	329.9	3,463	3.446	6,686	4,814	1.364	3.089	1.725	3.529
1:21:16	344.1	0.399	70.9	5.505	7.09	44.3453	330.9	3.470	3.453	6,693	4,831	1.374	3.102	1.729	3.517
1:22:22	345.2	0.405	70.8	5,499	7.19	44.3931	332.0	3.478	3.460	6.700	4.847	1.382	3.114	1.732	3.507
1:23:28	346.7	0.411	70.6	5.493	7.30	44.4416	333.5	3.489	3.472	6.712	4.870	1,394	3.132	1.738	3.494
1:24:32	348.0	0.417	70.4	5.487	7.40	44.4895	334.8	3,499	3.481	6.721	4,900	1,415	3.157	1.743	3.464
1:25:40	348,6	0.423	69.8	5.481	7,50	44.5380	335.4	3.502	3.484	6.724	4.940	1.452	3.196	1.744	3.403
1:26:46	350.3	0.429	70.8	5.475	7.59	44,5853	337.1	3.516	3.497	6.737	4.884	1.383	3.134	1.751	3.532
1:27:53	352.0	0.435	70.9	5,469	7,69	44.6332	338.8		3,511	6.751	4.892	1.377	3.135	1 758	3.563
1:29:03	353.1	0.441	70.7	5,463	7.80	44,6822	339.9		3,519	6.759	4.912	1.389	3.151	1.761	3.536
1:30:11	354.3	0.446	70.6	5.457	7.89	44,7304	341.1	3.546	3.527	6.767	4.931	1.400	3.165	1.766	3.523
1:31:19	355.6	0.452	70.4	5.451	7.99	44.7788	342.4		3.536	6.776	4.952	1.412	3.182	1.770	3.508
1:32:27	357.1	0.458	70.3	5.445	8.10	44.8281	343.9		3,548	6.788	4.971	1.420	3.196	1.776	3.502
1:33:33	358,4		70.2	5.439	8.19	44.8761	345.2		3.557	6.797	4.988	1.427	3.208	1.781	3.495
1:34:40	359,4		70.0	5,434	8.29	44.9251	346.2		3,563	6.803	5.004	1.436	3.220	1.784	3.483
1:35:48	360.8	0.476	70.0	5.428	8,39	44.9741	347.6		3.573	6.813	5.020	1,442	3.231	1.789	3.481
1:36:56	362.4		69.8	5.422	8.49	45,0233	349.3		3.587	6.827	5.042	1,451	3.247	1.795	3.474
1:38:05	363.3		69.6	5.416	8.59	45,0732	350.2		3.592	6.832	5.061	1,466	3.264	1,798	3.453
1;39:10	364.4	0.494	69,3	5.410	8.69	45.1220	351.2		3.599	6.839	5.093	1,490	3.292	1.801	3.418
1:40:18	365.9	0.500	69.7	5,404	8.79	45.1714	352.7		3,609	6.849	5.074	1.461	3.267	1.807	3.474
1:41:26	367.1	0.506	69.9	5.398	8.90	45.2217	353.9		3,617	6.857	5.068	1.446	3.257	1.811	3.505
1:42:31	368.1	0.512	69.9	5.392	8.99	45.2706	354.9		3.624	6.864	5.073	1.445	3.259	1.814	3.511
1:43:38	369,4		69.7	5.386	9.09	45.3204	356.2		3,633	6.873	5.097	1.460	3.278	1.819	3.492
1:44:46	371.1		69.6	5.380	9.19	45.3699	357.9		3.646	6.886	5.119	1.468	3.293	1.825	3.486
1:45:54	372.0		69.5	5.374	9.29	45.4201	358.8		3.651	6.891	5,132	1.477	3.304	1.828	3.476
1:47:00	372.7		69.3	5.368	9.39	45.4706	359,6		3,654	6.894	5.148	1.490	3.319	1.829	3,456
1:48:07	374.4		69.2	5.362	9.49	45.5202	361.2		3.667	6.907	5.166	1.496	3.331	1.835	3.454
1:49:15	375.4		69.2	5.357	9.59	45.5703	362.2		3.673	6.913	5.178	1.501	3.339	1.839	3,450
1:50:22	376.0		69.0	5.351	9.69		362.8		3.674	6.914	5.194	1.515	3.354	1.839	3.428
1:51:28	377.5		68.9	5.345	9.79		364.3		3.686	6,926	5.212	1.522	3.367	1.845	3.424 3.414
1:52:36	378.8		68.7	5.339	9.89		365.6		3.694 3.697	6.934	5.230	1.532 1.555	3,381 3,406	1.849 1,851	3.380
1:53:44	379,5		68.4	5.333	9,99	45.7734 45.8239	366.3		3.701	6.937 6.941	5.257 5.276	1,572	3,424	1,852	3.357
1:54:50	380.3		68.2	5.327	10.09		367.1		3.714	6.954	5.216	1.512	3.376	1.859	3.451
1:55:58			68.9	5.321	10.19		368.9 369.6		3.718	6.954	5.236	1.517	3.375	1,861	3.458
1:57:06			69.0 68.8	5.315 5.309	10.29 10.39		370.6		3.723	6.963	5.251	1,524	3.388	1.864	3.446
1:58:14			68.7	5.303	10.39		370.0		3.732	6.972	5.272	1,535	3.403	1.868	3.434
1:59:19 2:00:27	386,4		68.6	5.297	10,49		373.2		3.740	6.980	5.288	1,543	3,415	1.872	3.427
2:01:34	387.2			5.291	10.69		374.0		3.744	6,984	5.299	1,551	3,425	1.874	3.416
2:02:39				5.285	10.79		374.8		3,748	6.988	5,325	1.573	3.449	1.876	3.385
2:02:35			68.3	5.280	10.89		376.4		3,759	6.999	5.326	1,563	3,444	1.882	3.408
2:04:52			68.0	5.274	10,99		377.2		3,763	7.003	5.350	1.583	3,467	1.884	3.379
2:05:58				5,268	11.09		377.8		3,764	7.004	5.364	1.596	3.480	1.884	3.361
2:07:03				5,262	11.19		379.2		3.773	7.013	5.391	1.613	3.502	1.889	3.341
2:08:10				5,256	11.29		380.3		3.780	7.020	5.430	1.646	3.538	1.892	3.299
2:00:10				5.250	11.39		381.1		3.783	7.023	5.374	1.587	3,481	1.894	3.387
2:10:22				5.244	11.49		382.6		3.794	7.034	5.378	1.581	3.479	1.899	3,403
2:11:26				5.238	11.59		383.6		3.800	7.040	5.387	1.583	3.485	1.902	3,404
2:12:34			67,8	5.232	11.69		384.2		3.801	7.041	5.406	1.601	3.504	1.903	3,377
2:13:41	398.5			5.226	11.79		385.3		3.808	7.048	5.421	1.609	3.515	1.906	3,370
2:14:46				5.220	11.89		386.6		3.816	7.056	5.436	1.616	3.526	1.910	3.364

Consolidation Values Final Values 15.049 (cm) 4.835 (in.) 5.925 (in.) Height Height 3.272 (in) Diameter 2.851 (in) 7.243 (cm) Dia, avg. 6.386 (in*) 41,199 (cm²) 8.408 (in⁴) Area avg. Area

Tested By KDG

Date 12-14-09

Press No. 1

Panel No. A

Project Number 175569069

Test Number CU-3C

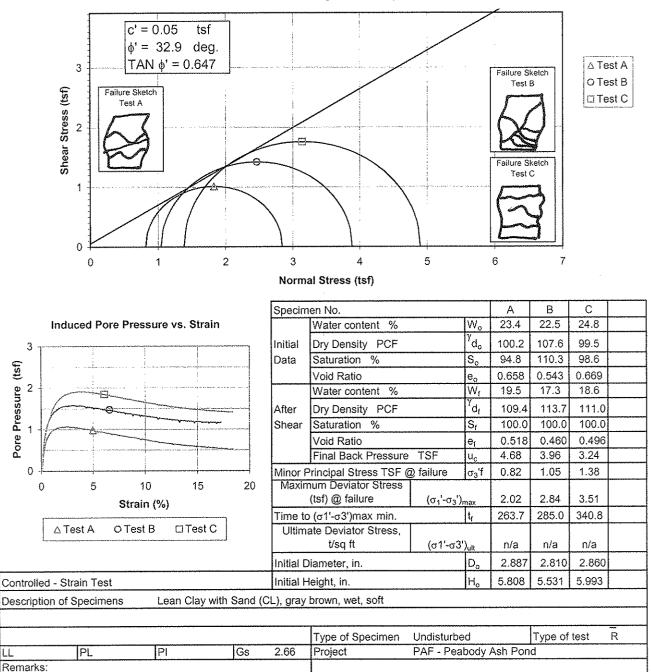
Data File ID 3C

Lateral Pressure (psi) 45.0

,								•		_		Çha	ımber Pressu	re - σ ₃ (psi)	90
			Pore						Corrected						Effective
		Deflection	Pressure	Corrected			Corrected		Deviator				b,	q	Principal
Clock Time		Dial Reading	Reading	Hieght	Strain	Corrected	Load	Devialor	Stress*	σ_1	σ_1	a3,	$(\sigma_1' + \sigma_3')/2$	$(\sigma_1 - \sigma_3)/2$	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	Stress (tsf)	(lsf)	(tsf)	(tsf)	(tsf)	(lsf)	(Isf)	σ_1 / σ_3
2:15:54	400.5	0.689	67.4	5.214	11.99	46.8126	387.3		3.818	7.058	5.447	1.625	3.536	1,911	3.352
2:17:03		0.695	67.3	5,208	12.09	46.8662	388.4		3.825	7.065	5.460	1.631	3,546	1.914	3,347
2:18:10		0.701	67.2	5.203	12.19	46.9194	389.2		3.827	7.067	5.472	1.640	3.556	1.916	3.336
2:19:19		0.707	67.1	5.197	12.29	46.9737	390.5		3.836	7.076	5.492	1.652	3.572	1.920	3.325
2:20:27		0.713	66.8	5.191	12.39	47.0260	391.2		3.839	7.079	5.517	1.674	3.595	1.921	3.296
2:21:34		0.719	66.7	5.185	12.49	47.0801	392.0		3.842	7.082	5.527	1.681	3.604	1,923	3.288 3.356
2:22:39 2:23:49		0.725 0.731	67.3 67.3	5.179 5.173	12,59 12,69	47.1334 47.1879	393.4 394.5		3.850 3.857	7.090 7.097	5.490 5.492	1.636 1.631	3.563 3.561	1.927 1.930	3.367
2:24:57		0.737	67.3	5.167	12.79	47.1079	395.5		3.862	7.102	5.508	1.642	3.575	1,933	3.355
2:26:05		0.742	67.0	5.161	12.89	47 2963	396.0		3.862	7,102	5.522	1.656	3,589	1,933	3,334
2:27:12		0.748	66.9	5.155	12.99	47 3496	397.3		3.870	7,110	5,536	1,662	3.599	1.937	3,331
2:28:20		0.754	66.9	5.149	13.09	47.4047	398.0		3.872	7.112	5.543	1,667	3.605	1.938	3.326
2:29:26		0.760	66.6	5.143	13.19	47.4590	398.8		3.875	7.115	5,561	1.681	3,621	1.940	3.307
2:30:32		0.766	66,6	5.137	13.29	47.5137	399.9	3,913	3,881	7.121	5.573	1.687	3.630	1.943	3.303
2:31:40	414.1	0.772	66,5	5.132	13.39	47.5682	400.9	3.919	3.886	7.126	5.582	1.692	3.637	1.945	3.299
2:32:48	3 414.7	0.778	66,2	5.126	13.49	47.6231	401.5	3,921	3,888	7.128	5.602	1.710	3.656	1.946	3.276
2:33:54	415,4	0.784	65,8	5.120	13.59	47.6787	402.2	3.923	3,890	7.130	5.636	1.742	3.689	1.947	3.235
2:35:01	416.6	0.790	66.5	5.114	13.69	47.7332	403.4	3.930	3.897	7.137	5,592	1,691	3.641	1.951	3,307
2:36:10		0.796	66.7	5.108	13.79	47.7890	404.4		3.902	7.142	5.587	1.681	3.634	1.953	3.324
2:37:17		0.802	66.6	5.102	13.89	47,8442	404.8		3,901	7.141	5,587	1.682	3.634	1.953	3.322
2:38:23		0,807	66.4	5.096	13.99	47,8996	405.8		3,906	7.146	5,607	1.698	3.653	1.955	3.303
2:39:32		0,813	66.3	5.090	14.09	47.9561	406.8		3,910	7.150	5,619	1.705	3.662	1.957	3.296
2:40:42		0.819	66.3	5.084	14.19	48.0122	407.5		3.912	7.152	5.626	1.710	3,668 3,684	1.958 1.959	3.291 3.273
2:41:48 2:42:55		0.825 0.831	66.1 66.0	5.078 5.072	14.29 14.39	48.0683 48.1247	408.2 409.8		3.915 3.925	7.155 7.165	5,643 5,657	1.724	3.693	1.959	3.273
2:44:01		0.837	65.9	5.066	14.49	48.1799	410.2		3.923	7.163	5.664	1.736	3.700	1.964	3,262
2:44:0		0.843	65.7	5.060	14.59	48.2366	410.2		3.924	7.164	5.679	1.751	3.715	1.964	3.243
2:46:15		0.849	65.4	5.054	14.69	48.2941	411.8		3.929	7.169	5.708	1.774	3.741	1.967	3.217
2:47:2			65.9	5.049	14,79	48.3499	413.1		3.938	7.178	5.680	1.739	3.710	1.971	3.267
2:48:27			66.0	5.043	14,89	48.4070	414.0		3.941	7.181	5.670	1.725	3.697	1.972	3.287
2:49:31		0.867	66.0	5.037	14,99	48.4630	414.4	3.976	3.940	7.180	5.670	1.726	3.698	1.972	3.285
2:50:36	428.9	0.873	65.9	5.031	15,09	48.5204	415.7	3.984	3.947	7.187	5.687	1.735	3.711	1.976	3.277
2:51:42	2 429.4	0.879	65.7	5.025	15,19	48.5769	416.2	3.984	3.947	7.187	5.698	1.746	3.722	1.976	3.263
2:52:47	7 429.8	0.884	65.6	5.019	15,29	48.6344	416.6	3.983	3.946	7.186	5.705	1.755	3.730	1.975	3.251
2:53:54		0.890	65.6	5.013	15.39	48.6926	418.2		3.956	7.196	5.719	1.759	3.739	1.980	3.251
2:55:01			65.5	5.007	15.49		418.7		3.956	7.196	5.726	1.766	3.746	1.980	3.243
2:56:00			65.3	5.001	15.59		419.1		3.955	7.195	5.734	1.775	3.755	1.980	3.231
2:57:1		0,908	65.2	4,995	15.69	48.8654	419.9		3.958	7.198	5.745	1.784	3.764	1.981	3.221
2:58:19		0.914	65.0	4.989	15.79	48.9229	420.9		3.962	7.202	5.767	1.800	3.783 3.820	1.983 1.984	3.203 3.162
2:59:26 3:00:3			64.5 65.4	4.984 4.978	15.89 15.99	48.9810 49.0403	421.6 422.4		3.964 3.967	7.204 7.207	5.804 5.740	1.835 1.770	3.755	1.985	3.162
3:00:3:			65.3	4,972	16.09		423.7		3.974	7.214	5.758	1.779	3.769	1.989	3.236
3:02:4			65.2	4.966	16.19		424.4		3.975	7.215	5.762	1.782	3.772	1.990	3.233
3:03:56			65.3	4,960	16.29		424.7		3.973	7.213	5.757	1.780	3.768	1.989	3.234
3:05:0				4.954	16.39		425.7		3.978	7.218	5.771	1.789	3.780	1.991	3.226
3:06:1				4.948	16.49		426.5		3.980	7.220	5.780	1.796	3.788	1.992	3.219
3:07:19			64.9	4.942	16.59		426.9		3.979	7.219	5.787	1.804	3.795	1.992	3.208
3:08:2	5 440.8	0.967	64.8	4.936	16.69	49,4507	427.6	4.021	3.980	7.220	5.797	1.812	3.804	1.992	3.199
3:09:3	3 441.9	0.973	64,8	4.930	16.79	49.5108	428.7	4.027	3.986	7.226	5.808	1.817	3.813	1.995	3.195
3:10:43	3 442.4	0.979	64.5	4,924	16,89	49.5708	429.2	4.026	3.985	7.225	5.824	1.834	3.829	1.995	3.175
3:11:5				4.918	16.99		429.7		3.985	7.225	5.812	1.823	3.817	1.995	3.189
3:12:5			65.0	4.912	17.09		430.8		3.990	7.230	5.796	1,802	3.799	1,997	3.217
3:14:0			65.0	4.907	17,19		431,9		3.995	7.235	5,797	1.797	3.797	2.000	3.226
3:15:1				4.901	17.29		432.1		3.992	7.232	5.805	1,809	3.807	1.998	3.209
3:16:2-				4.895	17.39		432.5		3.991	7.231	5.814	1.819	3.816	1,997	3.196
3:17:2				4.889	17.49		434,0		3.999	7.239	5.824	1.821	3.823	2.002	3,199
3:18:3			64.6	4.883	17.59		434.7 434.9		4.001 3.998	7.241 7.238	5.836 5.839	1.830 1.837	3.833 3.838	2,003 2,001	3.188 3.179
3:19;4 3:20:5			64.5 64.4	4.877 4.871	17.69 17.79		434.9		4.000	7.240	5.848	1.843	3,845	2.001	3.173
3:20.6				4.865	17.89		436.6		4.003	7.243	5.860	1.853	3.857	2.002	3.162
J.22.V	. 140.0	1.000	0.7.0	1.000		50,,,20	.55.0				2.000				

Consolidation Values					Final Values					Tested By	KDG		Pro	ject Number	175569069
Height	5.925	(in.)	15.049	(cm)		Height	4.835	(in.)		Date	12-14-09		١	Fest Number	CU-3C
Diameter	2.851	(in)	7.243	(cm)		Dia, avg.	3,272	(in)		Press No.	1			Data File ID	3C
Area	6.386	(in*)	41.199	(cm²)		Area avg.	8,408	(in")		Panel No.	Α		Lateral Pr	ressure (psi)	45.0
•						•		•		_		Chi	amber Pressu	ıre - σ ₃ (psi)	90
			Pore						Corrected						Effective
		Deflection	Pressure	Corrected			Corrected		Deviator				þ'	q	Principal
Clock Time	Load	Dial Reading	Reading	Hieght	Strain	Corrected	Load	Deviator	Stress*	σ_1	σ_1	Q3,	(\sigma_1'+\sigma_3')/2	(0 ₁ -0 ₃)/2	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	Stress (tsf)	(lsf)	(tsf)	(tsf)	(Isf)	(lsf)	(tsf)	σ_1'/σ_3'
3:23:08	450.4	1.044	64.0	4.859	17.99	50.2338	437.2	4.047	4.003	7.243	5.877	1.870	3.873	2.004	3.144
3:24:14	450.7	1.050	64.2	4.853	18.09	50,2954	437.5	4.045	4.001	7.241	5.859	1.854	3,856	2,002	3.160
3:25:22	452.1	1.056	64.6	4.847	18.19	50.3571	438.9	4.053	4.008	7.248	5.845	1.832	3,838	2,006	3.190
3:26:32	452.8	1.062	64.6	4.841	18.29	50,4192	439.6	4.054	4.010	7.250	5.842	1.828	3,835	2.007	3.196
2 27 30	453 3	1.068	64.5	4 835	18 30	50.4810	440.1	4.054	4 000	7 249	5 853	1 830	3.846	2 007	3 182

3


2

0

Pore Pressure (tsf)

Failure Criterion: Maximum Effective Principal Stress Ratio

Effective Strength Envelope

Prepared By: MW Approved BY: TLK

4

12-22-09

Boring No.

Depth Elev.

Laboratory

STN-12 (N3)

Stantec

Sample No.

Date

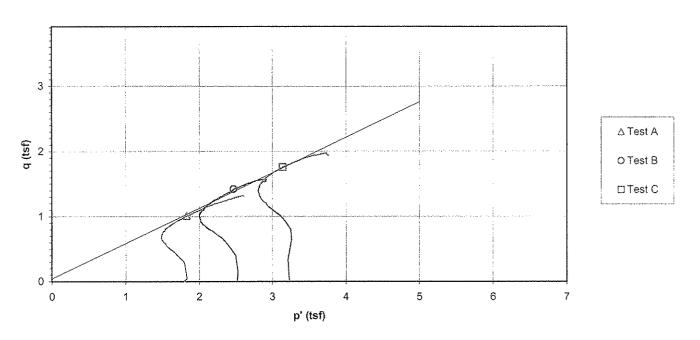
26.3'-26.8', 25.0'-25.5', 25.7'-26.2'

TRIAXIAL COMPRESSION TEST REPORT

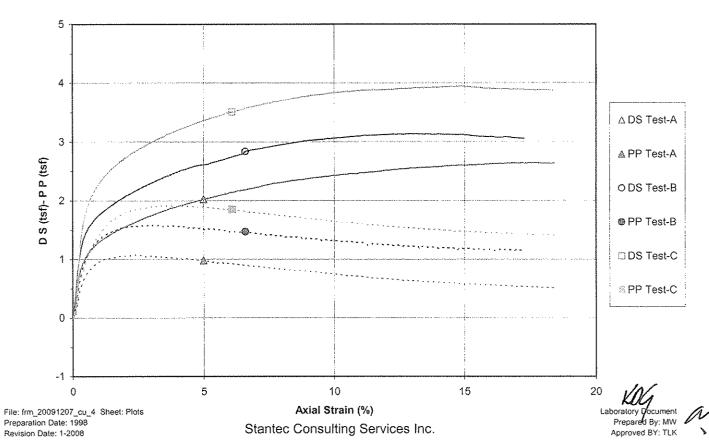
Project Sample ID PAF - Peabody Ash Pond

STN-12 (N3), 26.3'-26.8' & STN-12 (N3), 25.0'-25.5' & STN-12 (N3), 25.7'-26.2'

Project No. 175569069 Test Number C, = _ 0.05 tsf


Approved BY: TLK

Failure Criterion:


Maximum Effective Principal Stress Ratio

32.9 deg.

p' vs. q Plot

Deviator Stress and Induced Pore Pressure vs. Axial Strain

Stantec Consulting Services Inc.

Consolidated Undrained Triaxial Test

ASTM D4767-04

Visual Description Lean Clay with Sand (CL), gray brown, wet, soft Prepared By Undisturbed Source STN-12 (N3), 26.3'-27.0' Date 12	CU-4A MC 2-9-2009
Specific Gravity 2.66 ASTM D854 Method A Liquid Limit N/A Plastic Limit N/A Plasticity Index	
Specific Gravity 2.66 ASTM D854 Method A Liquid Limit N/A Plastic Limit N/A Plasticity Index	2-9-2009
Specimen Diameter (in.) Specimen Height (in.) Volumes (in³) Specimen	2 0 2000
Specimen Diameter (in.) Specimen Height (in.) Volumes (in³) Specimen Top 2.871 1 5.880 Sample 37.9836 (Vo) Wet Weight (g) Middle 2.889 2 5.739 Solids 22.9254 (VSo) Dry Weight (g) Bottom 2.897 3 5.844 Water 14.2965 (Vwo) Wet Unit Weight (pcf) Avg. 2.8857 (Do) 4 5.770 Voids 15.0582 (Vvo) Dry Unit Weight (pcf) Area (in²) 6.5401 (Ao) Avg. (Ho) 5.8078 Degree of Saturation (%) 94.9 (So) Moisture Content (%) 23.4 Final Trimmings Void Ratio 0.657 Saturation Saturation Set Up & Saturated: Wet xx Dry Set up By Back Pressure Saturated to: 65 (psi) Final Pore Pressure Parameter B 0.97 Date 12 Panel Board Number	N/A
Top 2.871 1 5.880 Sample 37.9836 (Vo) Wet Weight (g) Middle 2.889 2 5.739 Solids 22.9254 (VSo) Dry Weight (g) Bottom 2.897 3 5.844 Water 14.2965 (Vwo) Wet Unit Weight (pcf) Avg. 2.8857 (Do) 4 5.770 Voids 15.0582 (Vvo) Dry Unit Weight (pcf) Area (in²) 6.5401 (Ao) Avg. (Ho) 5.8078 Degree of Saturation (%) 94.9 (So) Moisture Content (%) 23.4 Final Trimmings Void Ratio 0.657 Saturation Saturated: Wet xx Dry Set up By Back Pressure Saturated to: 65 (psi) Final Pore Pressure Parameter B 0.97 Date 12 Panel Board Number	
Middle 2.889 2 5.739 Solids 22.9254 (VSo) Dry Weight (g) Bottom 2.897 3 5.844 Water 14.2965 (Vwo) Wet Unit Weight (pcf) Avg. 2.8857 (Do) 4 5.770 Voids 15.0582 (Vvo) Dry Unit Weight (pcf) Area (in²) 6.5401 (Ao) Avg. (Ho) 5.8078 Degree of Saturation (%) 94.9 (So) Moisture Content (%) 23.4 Final Trimmings Void Ratio 0.657 Saturation Set Up & Saturated: Wet xx Dry Set up By Back Pressure Saturated to: 65 (psi) Final Pore Pressure Parameter B 0.97 Date 12 Panel Board Number	
Bottom 2.897 3 5.844 Water 14.2965 (Vw _o) Wet Unit Weight (pcf) Avg. 2.8857 (D _o) 4 5.770 Voids 15.0582 (Vv _o) Dry Unit Weight (pcf) Area (in²) 6.5401 (A _o) Avg. (H _o) 5.8078 Degree of Saturation (%) 94.9 (S _o) Moisture Content (%) 23.4 Final Trimmings Void Ratio 0.657 Saturation Set Up & Saturated: Wet xx Dry Set up By Back Pressure Saturated to: 65 (psi) Final Pore Pressure Parameter B 0.97 Date 12 Panel Board Number	1233.66
Avg. 2.8857 (Do) 4 5.770 Voids 15.0582 (Vvo) Dry Unit Weight (pcf) Area (in²) 6.5401 (Ao) Avg. (Ho) 5.8078 Degree of Saturation (%) 94.9 (So) Moisture Content (%) 23.4 Final Trimmings Void Ratio 0.657 Saturation Set Up & Saturated: Wet xx Dry Set up By Back Pressure Saturated to: 65 (psi) Final Pore Pressure Parameter B 0.97 Date 12 Panel Board Number	999.37
Area (in²) 6.5401 (A₀) Avg. (H₀) 5.8078 Degree of Saturation (%) 94.9 (S₀) Moisture Content (%) 23.4 Final Trimmings Void Ratio 0.657 Saturation Set Up & Saturated: Wet xx Dry Set up By Back Pressure Saturated to: 65 (psi) Final Pore Pressure Parameter B 0.97 Date 12 Panel Board Number	123.7
Moisture Content (%) 23.4 Final Trimmings Void Ratio 0.657 Saturation Set Up & Saturated: Wetxx	100.2
Saturation Set Up & Saturated: Wet xx Dry Set up By Back Pressure Saturated to: 65 (psi) Final Pore Pressure Parameter B 0.97 Date 12 Panel Board Number	
Set Up & Saturated: Wet xx Dry Set up By Back Pressure Saturated to: 65 (psi) Final Pore Pressure Parameter B 0.97 Date 12 Panel Board Number	
Back Pressure Saturated to: 65 (psi) Final Pore Pressure Parameter B 0.97 Date 12 Panel Board Number	
Back Pressure Saturated to: 65 (psi) Final Pore Pressure Parameter B 0.97 Date 12 Panel Board Number	KDG
Panel Board Number	2-14-09
Height Readings (in.) Back Pressure Burette Chamber Burette	В
Initial 0.1258 Initial 17.21 (in.) Initial 11.6 (in.) Specimen Height (in.) 5.7739 (H $_{ m s}$)	3)
Final 0.1597 Final 16.27 (in.) Final 7.86 (in.) Area (in²) Method A 6.4633 (A _s)	,)
Change -0.0339 (ΔH _o) Change -0.94 (in.) Change -3.74 (in.) Specimen Volume (in ³) 37.32 (Vs)	3)
Consolidation	
Height Readings (in.) Back Pressure Burette Readings Chamber Burette Readings Pressures (psi)	
Initial 0.1597 Initial 1.57 (in.) Initial 17.21 (in.) Chamber 90	
Final 0.207 Final 9.52 (in.) Final 8.04 (in.) Back 65	
Change -0.0473 (ΔH_c) Change -7.95 (in.) Change -9.17 (in.) Lateral 25 (σ_3)	.)
Height (in.) 5.7266 (H _c) Volume (in ³) 34.7908 (V _c)	
Area (in ³) Method B 6.0753 (A _c) Volume - Water (in ³) 11.8654 (VWc) t ₅₀ (min.) 27	
Diameter (in.) 2.7812 (D _c) Water Content (%) 19.5	
Dry Density (pcf) 109.4 Degree of Saturation (%) 100.0 (S _c) Void Ratio 0.518	
After Test	
Final Measurements Final Moisture Content Stresses (membrane corrected) at Failure (psi)	
Maximum Diameter 3.29 (in.) Wet Weight (g) 1193.82 Corrected Deviator 2.02 σ_d (tsf)	
Wet weight (g) 1193.82 (WWf) Dry Weight (g) 999.37 Major Principal 2.84 σ_1' (tsf)	
Corrected Diameter 3.266 (in.) Tare Weight (g) 0.00 Minor Principal 0.82 $\sigma_{3'}$ (tsf)	
Rate of Strain (% / min.) 0.019	
Youngs Modulus for Membrane (psi) 200 Axial Strain at Failure (%) 5.00	
Membrane Thickness (in.) 0.012 Failure Criterion: Maximum Effective Principal Stress Ratio	
Failure Sketch Deviator Stress and Induced Pore Pressure vs. Strain p' vs. q Plot	
4 притостичення	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\
	لبي
80	
0 5 10 15 20 0 1 2 3 Strain % 0 1 2 3	
Strain % q' (tsf)	

File: frm_20091207_cu_4 Sheet: Specimen-A Preparation Date: 1998 Revision Date: 1-2008

Comments:

Laboratory Document Prepared By: MW Approved BY: TLK

Consolidated Undrained Triaxial Test

ASTM D4767-04

Project Name	PAF - Peaboo	dy Ash Pond					Project Number	175569069
•	STN-12 (N3),						Test Number	CU-4B
/isual Description	Lean Clay wit	th Sand (CL), brov	wn, wet, soft				Prepared By	MC
Jndisturbed	Source ST	N-12 (N3), 25.0'-2	25.7'				Date	12-9-2009
Specific Gravity	2.66 AS	TM D854 Method	I A Liquid Li	mit N/A	Plastic Lin	nit N/A	Plasticity Index	N/A
	44444444444444444444444444444444444444		lr	nitial Specime	n Data			
Specimen Diameter (ir	ı.) Sp	ecimen Helght (in	1.)	Vc	olumes (in3)		Specimen	
Top <u>2.809</u>		1 5.514		Sample	34.3268 (V _o)		Wet Weight (g)	1186.7
vliddle <u>2.805</u>		2 5.515		Solids	22.2215 (VS _o)		Dry Weight (g)	968.6
3ottom 2.819		3 5.519		Water	13.3051 (Vw _o)		Wet Unit Weight (pcf)	131.
Avg. <u>2.8110</u>	(D _o)	4 5.578		Voids	12.1053 (Vv _o)		Dry Unit Weight (pcf)	107.
Area (in²) 6.2060	(A_o) Ave	g. (H _o) 5.5312	Degree of S	Saturation (%) _	109.9 (S _o)			
Moisture Content (%)	22.5 Fin	nal Trimmings		Void Ratio_	0.545			
	·			Saturation	n			
Set Up & Saturated:	Wet	xxDry					Set up By	KDG
3ack Pressure Saturat	ed to:	55	(psi) Final f	Pore Pressure	Parameter B	0.98	Date	12-11-09
							Panel Board Number	D
Height Readings (in.)	Ва	ck Pressure Bure	tte Cham	ber Burette				
nitial 0.1126	Init	tial16.49_	(in.) Initial	9.95	(in.)	Specimen	Height (in.) 5.4368	(H_s)
Final 0.207	Fin	nal 16.73	(in.) Final	4.83	(in.)) Method A <u>5.9905</u>	(A _s)
Change0,0944	(ΔH _o) Ch	ange 0.24	(in.) Chang	ge <u>-5.12</u>	(in.)	Specimen \	/olume (in ³) 32.57	(V_s)
***************************************				Consolidati	ion			······
Height Readings (in.)	Ва	ck Pressure Bure	tte Readings	Chamber [Burette Readings		Pressures (psi)	
nitial 0.207	Init	tial 1.13	(in.)	Initial	17.73 (in.)		Chamber 90	
inal 0.2295	Fin	nal 14.93	(in.)	Final	2.67 (in.)		Back 55	
Change -0.0225	(ΔH _c) Ch	ange -13.80	(in.)	Change	-15.06 (in.)		Lateral 35	(σ_3)
Height (in.)	5.4143 (H _o	c)		Volume (in ³)	32.4463 (V _c)			
Area (in ³) Method B	5.9927 (A _c	_c)	Volume	e - Water (in³) ¯	10.2248 (VWc)		D ₅₀ (min.) 180	
Diameter (in.)	2.7623 (D	c)	Wate	r Content (%)	17.3		, , , , , , , , , , , , , , , , , , , 	
Dry Density (pcf)	113.7		Degree of S	Saturation (%)	100.0 (S _c)		Void Ratio0.460	
			·····	After Tes	t			
Final Measurem	ents	Final I	Moisture Content		Stresses (mem	brane corre	cted) at Failure (psi)	
Maximum Diameter	3.265 (in	-				cted Deviato		
Wet weight (g)	_1136.25_(W	/Wf) Dry Weigh	nt (g) <u>968</u>	.68	Major F	Principal	3.89 σ₁'₁ (tsf)	
Corrected Diameter	3.241 (in	.) Tare Weig	ght (g)0	0.00	Minor F	Principal	1.05 σ ₃ ' _f (tsf)	
						ain (% / min		
Youngs Modulus					Axial Strain a			
	rane Thicknes	ss (in.) 0.012	•	Failure	Criterion: Maximi	um Effective	Principal Stress Ratio	
Failure Sketo	:h	Deviator Stre	ss and Induced Pore P	ressure vs. Strain	2		o' vs. q Plot	
7	<u> </u>	\$3 8.2			3			
)	Λ	92	a		st-B DS (g) 2 -		_a [or	est-B
, ,				1 I		and the second s		
h ()	∞ 1 -1/	The state of the s	© Tes	SI-B PP -	and the same state of the same		o o mangangan pangan panga
(V	7	80 0 5	10 15	——————————————————————————————————————	st-B PP 0	1	2 3	

File: frm_20091207_cu_4 Sheet: Specimen-8 Preparation Date: 1998 Revision Date: 1-2008

Comments:

Consolidated Undrained Triaxial Test

ASTM D4767-04

Project Name	PAF - Pe	abody Ash	Pond					Project Number	175569069
Sample Identification		N3), 25.7'-2		······································	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Test Number	CU-4C
Visual Description	Lean Clay	/ (CL), gray	brown, wet, soft					Prepared By	MC
Undisturbed	Source	STN-12 (N	N3), 25.7'-26.2'					_ Date	12-9-2009
Specific Gravity	2.66	ASTM D8	54 Method A	Liquid Limi	ttN/A	Plastic Lin	nit N/A	Plasticity Index	N/A
				Init	ial Specim	en Data		No. 404	
Specimen Diameter (i	n.)	Specimen	Height (in.)		\	olumes (in³)		Specimen	
Top 2.865	-	1	6.022		Sample	38.5691 (V _o)		Wet Weight (g)	1254.79
Middle 2.852	_	2	5.995		Solids	23.0639 (VS _o)		Dry Weight (g)	1005.41
Bottom 2.871	.	3	6.028		Water	15.2174_(Vw _o)		Wet Unit Weight (pcf)	123.9
Avg. 2.8627	(D_o)	4	5.926		Voids	15.5052 (Vv _o)		Dry Unit Weight (pcf)	99.3
Area (in²) 6.4362	(A _o)	Avg. (H_o)	5.9925 C	egree of Sat	turation (%)	98.1 (S _o)			***************************************
Moisture Content (%)	24.8	Final Trim	mings		Void Ratio	0.672			
					Saturation	on			
Set Up & Saturated:	Wet	xx	Dry					Set up By	KDG
Back Pressure Satura	ted to:		45 (psi)	Final Por	e Pressure	Parameter B	0.99	Date	12-14-09
							*****	Panel Board Number	С
Height Readings (in.)		Back Pres	ssure Burette	Chambe	r Burette				
Initial 0.1415		Initial	16.76 (in.)	Initial	11.91	(in.)	Specimen	Height (in.) 5.8997	(H_s)
Final 0.2343	-	Final	16.81 (in.)	Final	8.05	(in.)	Area (in²) Method A 6.2337	(A_s)
Change -0.0928	- (ΔH _o)	Change	0.05 (in.)	Change	-3.86	(in.)	Specimen '	Volume (in ³) 36.78	(V _s)
					Consolida	tion			
Height Readings (in.)		Back Pres	ssure Burette Re	adinas	Chamber	Burette Readings		Pressures (psi)	
Initial 0.2343		Initial	1.73 (in.)	Ü	Initial	17.94 (in.)		Chamber 90	
Final 0.2948	-	Final	15.25 (in.)		Final	4.04 (in.)		Back 45	•
Change -0.0605	- (ΔH _c)	Change	-13.52 (in.)		Change	-13.90 (in.)		Lateral 45	(σ ₃)
Height (in.)	_ 5.8392	=	* *	V	/olume (in ³)				, , ,
Area (in ³) Method B	5.9078	_ ` ~′			Water (in ³)	***************************************		D ₅₀ (min.) 110	
Diameter (in.)	2.7426	-			Content (%)			- JU	•
Dry Density (pcf)	111.0	-	Γ	Degree of Sa				Void Ratio 0.496	
Dry Deficity (por)	71110	-		, vg. 00 0. 00					
					After Te	st			
Final Measuren	nents		Final Moistu	re Content		Stresses (mem	brane corre	cted) at Failure (psi)	
Maximum Diameter	3.302	_ (in.)	Wet Weight (g)	1192.7			ted Deviato		
Wet weight (g)	1192.77	_(WWf)	Dry Weight (g)	1005.4	1	Major F		4.90 σ ₁ ' _f (tsf)	
Corrected Diameter	3.278	(in.)	Tare Weight (g)	0.0	<u>0</u>		rincipal	1.38 σ _{3 f} (tsf)	
						Rate of Stra	-	***************************************	
Youngs Modult	us for Mem	brane (psi)	200			Axial Strain a	it Fallure (%) 6.10	
Mem	brane Thic	kness (in.) 	0.012		Failur	e Criterion: Maximu	ım Effective	Principal Stress Ratio	
Failure Sket	ch	5 7-	Deviator Stress and Ir	duced Pore Pres	ssure vs. Strain		į	o' vs. q Plot	
1	7	£4				4 3			
-	7	(s) dd %			П Те	st-C DS (st) d	inan mana amakan ma	المساور المساحد	rest-C
\ ^	(888			🖾 Te	st-CPP I T			
) '	\forall		-	·		0 +			
	4	0	5 10 Strai		20	C	1	2 3 4 q' (tsf)	
		1	ouai	0				4 (101)	111

File: frm_20091207_cu_4 Sheet: Specimen-C Preparation Date: 1998 Revision Date: 1-2008

Comments:

Consolidation Values	Final	Values	Tested By	KDG	Project Number	175569069
Height 5.727 (in.) 1	4.546 (cm) Height	4.672 (in.)		2-16-09	Test Number	CU-4A
Diameter 2.781 (in)	7.065 (cm) Dia. avg.	3.194 (in)	Press No.	1	Data File ID	CU-4B
11100	9.198 (cm²) Area avg.	8.010 (in ^e)	Panel No.	В	Lateral Pressure (psi)	25.0
					Chamber Pressure - σ_3 (psi)	90

N										P.44	***************************************	Cha	amber Pressu	re - σ ₃ (psi)	90
		Deflection	Pore						Corrected						Effective
Clock		Dial	Pressure	Corrected			Corrected	Deviator	Deviator				p'	q	Principal
Time	Load	Reading	Reading	Hieght	Strain	Corrected	Load	Stress	Stress*	σ,	σ_1	σ ₃ '	(a1'+a3')/2	(a1-a3)/5	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	(tsf)	(tsf)	(tsf)	(tsf)	(Isf)	(tsf)	(tsf)	σ ₁ ' / σ ₃ ' 0,999
0:00:00	12.0	-0.020	65.0	5.727	0.00	39.1976	0.0	0.000	0.000	1.800	1.800	1.802	1.801 1.837	-0.001 0.042	1,047
0:07:33	19.3	-0.014	65.1	5.721	0.10	39.2386	7.3	0.087	0.087 0.585	1.887	1.879 2.090	1.794 1.507	1.799	0,291	1.387
0:13:40	61.4	-0.009	69.1	5.715 5.709	0.20 0.30	39.2764 39.3162	49,4 68.3	0.585 0.807	0.807	2.385 2.607	2.105	1.300	1.703	0.402	1.619
0:18:58 0:24:07	80.3 91.5	-0.003 0.003	71,9 73.7	5.709	0.40		79.5	0.939	0.938	2.738	2.103	1.176	1.645	0.468	1.796
0:29:17	99.3	0.003	75.1	5.698	0.50		87.3	1.031	1.030	2.830	2.104	1.076	1.590	0.514	1.955
0:34:51	105.5	0.014	76.0	5.692	0.60		93.4	1.102	1.100	2.900	2.109	1.010	1.560	0.549	2.087
0:39:58	110.6	0.020	76,6	5.686	0.70		98.6	1.161	1.159	2.959	2.124	0.967	1,545	0.579	2.197
0:45:21	114.7	0.026	77.3	5.681	0.80		102,7	1.208	1.206	3.006	2.119	0.914	1,517	0.602	2.317
0:50:46	118.8	0.032	77.7	5,675	0.90	39.5540	106.8	1,255	1.253	3.053	2.137	0.886	1.512	0.626	2.412
0:55:40	121,6	0.037	78.2	5,669	1.00	39,5943	109.6	1,287	1.285	3.085	2.134	0.851	1.492	0.642	2.508
1:01:02	125.0	0.043	78.4	5,664	1.10	39.6344	113.0	1,326	1,323	3.123	2.153	0.832	1.493	0.661	2.588
1:06:12	127.7	0.049	78.8	5,658	1.20		115.7	1,356	1.353	3.153	2.160	808.0	1.484	0.676	2,672
1:11:28	130.4	0.055	78.9	5.652	1.30		118.3	1.386	1.382	3.182	2.178	0.798	1.488	0.690	2.731
1:16:27	133.1	0.060	79.0	5.646	1,40		121.0	1.416	1.412	3.212	2.202	0.792	1.497	0.705	2.781 2.859
1:21:36	135.4	0.066	79.3	5.641	1.50		123.4	1.442	1.438	3.238	2.210	0.773	1.491 1.501	0.718 0.730	2.896
1:27:02	137.6	0.072	79.3	5,635	1.60		125.6	1.467	1.463	3.263	2.231	0.770	1.498	0.743	2.968
1:32:01	140,0	0.077	79.5	5.629	1.70 1.80		127.9 129.9	1.492 1.513	1.488 1.508	3,288 3,308	2.241 2.260	0.755 0.754	1.507	0.753	2,999
1:37:14 1:42:32	141.9 144.2		79.5 79.6	5.623 5.618	1.90		132.2	1.538	1,534	3,334	2.280	0.748	1.514	0.766	3,049
1:47:30	146.0			5.612	2.00		134.0	1.558	1,553	3.353	2.297	0.746	1.522	0.776	3,079
1:53:04	148.1	0.100		5.606	2.10		136.1	1.581	1.575	3.375	2.324	0.751	1.537	0.787	3,096
1:58:20	150.1	0.106		5.601	2.20		138.0	1.601	1.596	3,396	2.334	0.740	1.537	0.797	3.155
2:03:50	151.7	0,112		5,595	2.30		139.7	1.619	1.613	3.413	2.355	0.744	1.549	0.806	3.167
2:08:56	153.8	0.118	79.8	5.589	2.40	40.1630	141.8	1.642	1.636	3.436	2.365	0.731	1.548	0.817	3.235
2:14:24	155.4	0.123	79.7	5,583	2.50	40.2034	143.4	1,659	1.652	3.452	2.390	0.739	1.565	0.825	3.232
2:19:39	157.4	0.129	79.8	5.578	2.60	40.2450	145.4	1,680	1.673	3.473	2.406	0.735	1.570	0.836	3.275
2:24:48	159.3	0.135	79.7	5.572	2.70		147.3	1,700	1.694	3.494	2.434	0.742	1.588	0.846	3.282
2:29:59	160.9	0.140		5.566	2,80		148.9	1.717	1.710	3,510	2.467	0,759	1.613	0.854	3.251
2:35:10	162.7			5.560	2,90		150.7	1.736	1.729	3.529	2.469	0.742	1.606 1.622	0.864 0.871	3.328 3.319
2:40:01	164.2				3.00		152.2	1.751	1.744	3.544	2.493	0.751	1.624	0.879	3.360
2:45:06	165.7			5.549	3.10		153.7 155.5	1.767 1.786	1.759 1.778	3.559 3.578	2.503 2.535	0.745 0.758	1.646	0.888	3.343
2:50:20 2:55:16	167.5 169.3				3.20 3.30		157.3	1.805	1.776	3.596	2.550	0.756	1.653	0.897	3.375
3:00:22	170.9			5,532	3.40		158.8	1.820	1.812	3.612	2.574	0.764	1.669	0.905	3.369
3:05:35	172.5			5.526	3.50		160.5	1.837	1.829	3.629	2.588	0.761	1.675	0,913	3.399
3:10:33	173.9				3.60		161,9	1.851	1.842	3.642	2.611	0.771	1.691	0.920	3.388
3:15:40	175.6			5,515	3.70	40.7049	163,6	1.869	1.860	3,660	2.628	0.769	1.698	0.929	3.416
3:20:47	177.0	0.198	79.2	5.509	3,80	40.7472	165.0	1.883	1.873	3.673	2.651	0.779	1.715	0.936	3.403
3:25:52	178.1	0.203	79.2	5,503	3,90	40.7894	166.1	1,894	1.884	3.684	2.658	0.776	1.717	0.941	3,426
3:31:02	179.7	0.209	79.0	5.497	4.00		167.6	1,909	1.899	3.699	2.692	0.795	1.743	0.949	3,388
3:36:15				5.492				1.924	1,913	3.713	2.696	0.784	1.740	0.956	3,439
3:41:22							170.1	1.933	1.922	3.722	2.726	0.806	1.766	0.960 0.968	3.383 3.441
3:46:34	183.6				4.30			1,948	1.937	3.737	2.728	0.793	1.761 1.771	0.974	3.445
3:51:54	184.9							1.961	1.950	3.750	2.746	0.797 0.801	1.781	0.980	3.445
3:57:13							174.1 175.3		1.961 1.973	3.761 3.773	2.761 2.775	0,804	1.789	0.986	3.453
4:02:21 4:07:36	187.4 188.7				4.70				1.986	3.786	2.794	0,810	1.802	0.992	3.451
4:07:30	190.1								1.999	3.799	2.808	0,811	1.810	0.999	3.462
4:18:22									2.009	3.809	2.829	0.821	1.825	1.004	3.444
4:23:43									2.024	3.824	2.843	0.821	1.832	1.011	3.465
4:29:11	194.0								2.036	3.836	2.869	0.834	1.851	1,017	3.438
4:34:36								2.055	2.043	3.843	2.876	0.835	1.856	1.020	3.443
4:39:44		0.284	78.1	5,423	5.30	41.3929	184.1	2.068	2.054	3.854	2.912	0.860	1.886	1,026	3.388
4:44:54	197.4	0.289	78.2	5,417	5.40	41.4367	185.4	2.080	2.067	3.867	2,911	0.846	1.879	1.033	3.440
4:50:07									2.076	3.876	2.943	0.869	1.906	1.037	3.386
4:55:25									2.090	3.890	2.945	0.856	1.901	1.044	3.438 3.435
5:00:39									2,102	3.902	2.963	0.862	1.912 1.920	1.050 1.055	3,436
5:05:53									2.111 2.117	3,911 3.917	2.975 2.984	0.866 0.869	1.927	1.058	3,433
5:11:07	203.0	0.318	3 77.9	3,308	ວ,ສເ	, -1.0008	150.5	2.131	6.111	0.011	2,004	0.003			

	Consolidation Valu	ies	Final Va	lues	Tested By	KDG	Project Number	175569069
Height	5.727 (in.)	14.546 (cm)	Height	4.672 (in.)	Date	12-16-09	Test Number	CU-4A
Diameter	2.781 (in)	7.065 (cm)	Dia. avg.	3.194 (in)	Press No.	1	Data File ID	CU-4B
Area	6.076 (in*)	39.198 (cm²)	Area avg.	8.010 (in²)	Panel No.	В	Lateral Pressure (psi)	25.0
			••••				Chamber Pressure - σ_3 (psi)	90

Area	6.076	(111)	39.196	(CIII)		Alea avg.	0.010	(11.7		ranei No.				essure (psr)	20.0
												Çha	imber Pressu	ire - O3 (bsi)	90
		Dadama	0						Coccoalad						C.Contino
01.4		Deflection	Pore				C	D3-4	Corrected				p'	0	Effective
Clock		Dial	Pressure	Corrected		Competed	Corrected	Deviator	Deviator					q (\(^2	Principal
Time	Load	Reading	Reading	Hieght	Strain	Corrected	Load	Stress	Stress*	α1	σ_1	α3	$(\sigma_1' + \sigma_3')/2$	$(\sigma_1 - \sigma_3)/2$	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	(tsf)	(tsf)	(lsf)	(tsf)	(tsf)	(tsf)	(Isf)	σ ₁ '/σ ₃ '
5:16:28	204.8	0.324	77.8	5.383	6.00	41.7012	192.8	2.150	2,135	3.935	3.009	0.876	1,943	1.067	3.436
							193.6	2.157	2,141	3.941	3.016	0.876	1.946	1.070	3.442
5:21:46	205.6	0.330	77.8	5.377	6.10	41.7459									
5:27:12	206.6	0.335	77.7	5.371	6.20	41.7902	194.6	2.166	2.150	3.950	3.036	0.888	1.962	1.074	3.419
5:32:27	208.3	0.341	77.7	5.366	6.30	41.8349	196.3	2.182	2,166	3.966	3.051	0,887	1.969	1.082	3.441
5:37:40	208.9	0.347	77,5	5.360	6,40	41.8798	196.9	2.186	2,170	3.970	3.067	0,899	1.983	1.084	3.412
													1.986	1.087	3,421
5:43:06	209.7	0.352	77.5	5,354	6,50	41.9246	197.7	2.193	2.177	3,977	3.073	0.898			
5:48:28	210.6	0.358	77.3	5.348	6.60	41.9693	198.6	2.200	2,184	3,984	3.094	0,912	2.003	1.091	3.392
5:53:52	211.9	0.364	77.4	5.343	6.71	42.0149	199.9	2.213	2,196	3,996	3.103	0.909	2.006	1.097	3,415
5:59:10		0.370	77.1	5.337	6.80	42,0598	200.9	2.221	2.204	4.004	3,131	0.929	2.030	1.101	3.371
													2.024	1.105	3,402
6:04:28	213.8	0.375	77.2	5.331	6.90	42.1046	201.7	2.228	2.211	4,011	3,129	0.920			
6:09:44	215.2	0.381	77.2	5.325	7.00	42.1501	203.2	2.242	2.224	4.024	3,147	0.924	2.035	1.111	3,406
6:15:04	216.2	0.387	77.1	5.320	7.10	42.1953	204.2	2.251	2.233	4,033	3,158	0.927	2.042	1.116	3,408
			77.1	5.314	7.20	42.2409	205.3	2.260	2.242	4.042	3,170	0.930	2.050	1,120	3.410
6:20:21		0,393													3.399
6:25:31	218.7	0.398	77.0	5.308	7.31	42.2869	206.7	2.273	2.255	4.055	3,193	0.939	2.066	1.127	
6:30:36	219.9	0,404	77.0	5.303	7,40	42,3322	207.8	2.283	2.265	4.065	3,202	0.939	2.071	1.131	3.409
6:35:40	220.8	0.410	76.8	5.297	7.50	42.3780	208.8	2.291	2.272	4.072	3,219	0.949	2.084	1.135	3.393
						42,4239	210.0	2.302	2.283	4.083	3,231	0.949	2.090	1,141	3.403
6:40:44		0.415	76.8	5.291	7,60										
6:45:49	223.3	0.421	76.7	5.285	7.71	42.4700	211.2	2.313	2.294	4.094	3,249	0.957	2.103	1.146	3.394
6:50:56	223.9	0.427	76.7	5.280	7.81	42,5163	211.9	2.318	2.298	4.098	3.253	0.957	2.105	1.148	3.401
6:55:56		0.433	76.6	5.274	7.91	42,5624	212.5	2.322	2.302	4.102	3.268	0,967	2.118	1.150	3.378
													2.120	1.155	3.396
7:01:06	225.7	0.438	76.6	5.268	8.01	42,6089	213.7	2.332	2.312	4,112	3.275	0.964			
7:06:12	226.4	0.444	76.4	5.262	8.11	42.6555	214.4	2.337	2.317	4,117	3.292	0.977	2.134	1.157	3.371
7:11:19	227.4	0.450	76.5	5.257	8.21	42,7014	215.4	2.346	2.325	4,125	3.297	0.974	2.136	1.162	3,386
		0.456	76.3	5.251	8.31	42.7481	216.3	2.353	2.333	4,133	3.318	0.987	2.152	1,165	3.363
7:16:38													2.153	1.169	3.375
7:21:53	229.3	0.461	76.3	5.245	8.41	42.7949	217.3	2.361	2.340	4,140	3.323	0.984			
7:27:03	229.8	0.467	76.1	5.240	8.51	42.8414	217.8	2.364	2.343	4.143	3,342	1.001	2.172	1.171	3.339
7:32:18	230.9	0.473	76.2	5.234	8.61	42.8882	218.9	2.373	2.351	4.151	3,340	0.990	2.165	1.175	3.372
		0.478	76.1	5.228	8.71		219.7	2.379	2.358	4.158	3.355	0.998	2.176	1.178	3.360
7:37:40															
7:42:59	232.0	0.484	76.1	5.222	8.81	42.9827	220.0	2.380	2.358	4.158	3.357	1,000	2,179	1.178	3,356
7:48:13	233.1	0.490	76.1	5.217	8.91	43.0296	221.1	2.390	2.367	4.167	3.368	1,002	2.185	1.183	3,360
7:53:37		0.496	76.0	5,211	9.01	43.0772	221.8	2.394	2.372	4.172	3.378	1.008	2,193	1.185	3.351
												1.009	2.196	1.188	3.355
7:58:59	234.6	0.501	76.0	5.205	9.11		222.6	2.400	2.377	4.177	3.384				
8:04:20	235.6	0.507	75.8	5,199	9.21	43.1722	223.6	2.409	2.386	4.186	3,404	1.020	2.212	1.192	3.338
8:09:47	236.3	0,513	75.9	5,194	9.31	43.2196	224.3	2.414	2.390	4.190	3,406	1.018	2.212	1.194	3.347
8:15:17		0.519		5.188	9.41			2.419	2.395	4.195	3,425	1.031	2,228	1.197	3.321
														1.199	3.327
8:20:41	237.7	0.524	75.7	5.182	9.51			2.423	2.399	4.199	3,428	1.030	2.229		
8:26:13	238.5	0.530	75.4	5.177	9,61	43.3630	226.5	2,429	2.405	4.205	3.455	1.052	2.254	1.202	3.284
8:31:47	239.4	0.536	75.6	5.171	9.71	43.4112	227.4	2,436	2.412	4.212	3.450	1,040	2.245	1,205	3.317
					9,81			2,436	2.411	4.211	3.453	1.044	2.248	1,205	3.309
8:37:0€															3.308
8:42:21	241.1	0.547	75.4	5.159	9,91	43.5075	229.1	2.448	2.424	4.224	3.471	1,049	2.260	1,211	
8:47:47	242.1	0.553	75,4	5.154	10,01	43.5560	230.1	2,456	2.432	4.232	3.479	1.049	2.264	1,215	3.317
8:53:01	242.2	0.559	75,3	5.148	10.11	43,6046	230.2	2.455	2,430	4.230	3.488	1.060	2.274	1.214	3.290
								2,462	2,436	4.236	3.496	1.061	2.278	1,217	3.294
8:58:13					10.21										
9:03:42	244.0	0.570	75.1	5.136	10.31	43.7017	232.0	2,468	2,443	4.243	3.512	1.071	2.291	1.221	3.280
9:09:03	3 244.5	0.576	75.1	5.131	10.41	43.7509	232.5	2,471	2.445	4.245	3.514	1.071	2.293	1.222	3.283
9:14:20	245.0	0.582	74.9	5.125	10,51	43.7995	233.0	2.473	2.447	4.247	3.532	1.087	2.310	1.223	3.251
							234.3		2.458	4.258	3.537	1.080	2.308	1.228	3.274
9:19:51					10,61										
9:25:05	246.3	0.593	74.9	5.114	10.71	43.8974	234.3	2,482	2.455	4.255	3.542	1.089	2.316	1.227	3.254
9:30:32	246.9	0.599	74.9	5.108	10.81	43.9468	234.9	2,485	2.458	4.258	3.546	1.089	2.318	1.228	3.255
9:36:02					10,91				2.459	4.259	3.548	1.090	2.319	1.229	3.254
															3.249
9;41;30					11.01				2.472	4.272	3.569	1.098	2.333	1.235	
9:46:54	248.7	0.616	74.8	5.091	11.11	44.0953	236.7	2.496	2.469	4.269	3.565	1.098	2.331	1.233	3.247
9:52:14		0.622	74.6	5.085	11.21	44.1451	237.8	2.505	2.478	4.278	3.586	1,110	2.348	1.238	3.230
					11.31				2.479	4.279	3.588	1.110	2.349	1.239	3.231
9:57:39															
10:03:04	251.1	0.633	74.3	5.073	11.41				2.485	4.285	3.613	1,130	2.371	1.242	3.198
10:08:19	9 251.4	0.639	74.4	5,068	11.51	44.2946	239.4	2.514	2.485	4,285	3.604	1,121	2.363	1.242	3.215
10:13:40		0.645	74.3	5.062	11.61	44.3457	240.2	2.519	2.490	4.290	3,617	1.128	2.372	1.244	3.205
					11,71				2.499	4.299	3.625	1.128	2.376	1.249	3.215
10:19:00															
10:24:1	1 253.6	0.656	74,3	5.050	11.81				2.498	4.298	3.627	1.130	2.379	1.248	3,209
10:29:23	3 254.9	0.662	74.2	5.045	11.91	44.4959	242.9	2.538	2.509	4.309	3.643	1,135	2.389	1.254	3.208

	Consolidation Valu	ies	Final V	alues	Tested By	KDG	Project Number	175569069
Height	5.727 (in.)	14.546 (cm)	Height	4.672 (in.)	Date	12-16-09	Test Number	CU-4A
Diameter	2.781 (in)	7.065 (cm)	Dia. avg.	3.194 (in)	Press No.	1	Data File ID	CU-4B
Area	6.076 (in²)	39.198 (cm²)	Area avg.	8.010 (in²)	Panel No.	В	Lateral Pressure (psi)	25.0
			•		,		Chamber Pressure - 03 (psi)	90

Alea	0.010	` ′ .								-	***	Chamber Pressure - O ₃ (psi) 90				
			_											.		
Clast		Deflection Dial	Pore	Corrected			Corrected	Deviator	Corrected Deviator				p'	q	Effective Principal	
Clock Time	Load	Reading	Pressure Reading	Hieght	Strain	Corrected	Load	Stress	Stress*	σ_1	σ_1	σ_3 '	(σ ₁ *+σ ₃ *)/2	(σ ₁ -σ ₃)/2	Stress Ratio	
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(Isf)	σ_1'/σ_3'	
10:34:42	255.7	0.668	74.2	5.039	12.01	44.5469	243.7	2,544	2.514	4.314	3.648	1.135	2.392	1.256	3.213	
10:39:52	256.0	0.673	74.1	5.033	12.11	44,5974	244.0	2,544	2.514	4.314	3.656	1.144	2.400	1.256	3,197	
10:45:07	257.1	0.679	74.2	5.028	12.21	44.6480	245.1	2,553	2.523	4.323	3.662	1,141	2.401	1.260	3.209	
10:50:25	257.7	0.685	74.0	5.022	12.31	44,6989	245.7	2.556	2.525	4.325	3.674	1,151	2.412	1.262	3.193	
10:55:39	258.4	0.690	74.1	5.016	12.41	44,7500	246.4	2.560	2.529	4.329	3.675	1,147	2.411	1.264	3.203	
11:00:51	259.5	0.696	73.9	5,010	12.51	44.8014	247.4	2.568	2.537	4.337	3.694	1,159	2.427	1.268	3.188	
11:06:15	259.9	0.702	74.0	5.005	12.61	44.8526	247.9	2.570	2.538	4.338	3.692	1.155	2.424	1.268	3.195	
11:11:36	260,1	0.702	73,6	4.999	12.71	44.9042	248.1	2.569	2.538	4.338	3.713	1,177	2.445	1.268	3.154	
11:16:52		0.713	73.8	4,993	12.81	44.9561	249.0	2.576	2,544	4.344	3.705	1.163	2.434	1.271	3.186	
11:22:19	262.0	0.719	73.8	4,987	12,91	45.0073	250.0	2.583	2,551	4.351	3.712	1.163	2.438	1.275	3.192	
11:27:45		0.725	73.8	4,982	13.01	45.0591	250.5	2.585	2.553	4.353	3.720	1.169	2.444	1.276	3.183	
11:33:06		0.731	73.8	4.976	13.11	45.1111	250.8	2,586	2.553	4.353	3.720	1.168	2.444	1.276	3.184	
11:38:31	263.3	0.736	73.7	4.970	13.21	45.1629	251.3	2,588	2.555	4.355	3.729	1.176	2.453	1.277	3.170	
11:44:00		0.742	73.7	4.965	13.31	45.2150	252.2	2,594	2.561	4.361	3.731	1.172	2.452	1.280	3.183	
11:49:33		0.748	73.5	4.959	13.41	45,2671	252.8	2.597	2.563	4.363	3.746	1,185	2.466	1.281	3.162	
11:55:08		0.754	73.6	4.953	13.51	45.3199	253.3	2.599	2.565	4.365	3.745	1,181	2.463	1.282	3.170	
12:00:43		0.759	73.5	4.947	13.61	45.3723	253.9	2.602	2.568	4.368	3.758	1,192	2.475	1,283	3.154	
12:06:22		0.765	73.5	4.942	13.71	45.4246	254.1	2.601	2.567	4.367	3.753	1,187	2.470	1.283	3.161	
12:11:58		0.771	73.5	4.936	13,81	45.4774	255.0	2,607	2,573	4.373	3.759	1,187	2.473	1.286	3,166	
12:17:38		0.776	73.4	4.930	13,91	45.5304	255.6	2.610	2.576	4.376	3.769	1.195	2.482	1.287	3,154	
12:23:13		0.782	73.5	4.924	14.01	45.5833	255.9	2.610	2.575	4.375	3.765	1.191	2.478	1.287	3,161	
12:28:49		0.788	73.3	4.919	14.11	45,6363	256.5	2.614	2.579	4.379	3.781	1.204	2.492	1.289	3,141	
12:34:27		0.794	73.3	4.913	14.21	45,6896	257.6	2.622	2.587	4.387	3.784	1.199	2.492	1.292	3.156	
12:39:53		0.799	73.2	4.907	14.31	45,7428	258.5	2.627	2.592	4,392	3.799	1.209	2.504	1.295	3.142	
12:45:24		0.805	73.3	4.901	14.41	45.7969	258.6	2.625	2.590	4,390	3,792	1.205	2.498	1.294	3.148	
12:50:55		0.811	73.3	4.896	14.51	45,8500	259.7	2.634	2.598	4,398	3.800	1.204	2.502	1.298	3.156	
12:56:25		0.817	73.2	4.890	14.61	45.9040	260.0	2.634	2,598	4.398	3.807	1,211	2.609	1,298	3.144	
13:01:52		0.822	73.2	4.884	14,71	45.9576	260.4	2.634	2.598	4.398	3.805	1.208	2.507	1,298	3.148	
13:07:29		0.828	73.1	4.879	14.81	46.0115	261.3	2,641	2.604	4.404	3.820	1.218	2.519	1,301	3.137	
13:13:00		0.834	73.1	4.873	14.91	46.0658	261.6	2,640	2.603	4.403	3.816	1.214	2.515	1,301	3.142	
13:18:34		0.840	72.9	4.867	15.01	46.1202	261.1	2,633	2.596	4.396	3.829	1,235	2.532	1.297	3.101	
13:24:07		0.845		4.861	15.11	46.1740	262.1	2,640	2.602	4.402	3.822	1.221	2.521	1,300	3.129	
13:29:45		0.851	73.0	4.856	15.21	46.2286	262.9	2.645	2.607	4.407	3.826	1.221	2.524	1,303	3.133	
13:35:22			73.0	4.850	15.31	46,2836	263.2	2.645	2.607	4.407	3.832	1.227	2.529	1,302	3.123	
13:40:45		0.862		4.844	15.41		263.5	2.644	2,606	4,406	3.830	1.226	2.528	1.302	3.125	
13:46:17				4.838	15.51		264.8	2.654	2,615	4.415	3.846	1.233	2.539	1.307	3.121	
13:51:38			72.9	4.833	15.61		264.9	2.652	2.613	4,413	3,841	1.229	2.535	1.306	3.125	
13:57:05				4.827	15.71	46,5029	265.2	2.652	2.613	4,413	3,853	1.242	2.547	1.306	3.103	
14:02:31				4.821	15.81		266.5	2.662	2.622	4,422	3,857	1.236	2.547	1.310	3,120	
14:07:57			72.6	4,816	15.91	46.6139	266.8	2.662	2.622	4.422	3,870	1.249	2.560	1,310	3.097	
14:13:17			72,8	4.810	16.01	46,6694	267.4	2.665	2.625	4.425	3.864	1.241	2.552	1.312	3,115	
14:18:37	280.1	0.903	72.8	4.804	16.11	46,7249	268.1	2.668	2.628	4.428	3.868	1.242	2.555	1.313	3,116	
14:23:52				4.798	16.21		268.4	2.668	2.628	4.428	3.874	1.248	2.561	1.313	3.105	
14:29:10				4.793	16.31	46,8367	269.0	2.670	2.630	4.430	3.873	1.245	2.559	1.314	3.111	
14:34:22					16.41		269.5	2.672	2.631	4.431	3.881	1.251	2.566	1.315	3.102	
14:39:37				4.781	16.51	46,9493	270.0	2.674	2.633	4,433	3,881	1.249	2.565	1,316	3,107	
14:44:58				4,775	16.61	47.0055	270.6	2.677	2,636	4,436	3,889	1.255	2.572	1.317	3,099	
14:50:10				4,770	16.71	47.0617	271.3	2.680	2.639	4,439	3,891	1.254	2.572	1.319	3.104	
14:55:39		0.943	72.5	4.764	16,81	47.1182	271.7	2.681	2.639	4.439	3,901	1.264	2.582	1.319	3.087	
15:01:04					16.91				2.639	4.439	3.897	1.259	2.578	1.319	3.094	
15:06:18					17.01			2.678	2.635	4,435	3.910	1.276	2.593	1.317	3.064	
15:11:3					17.11		272.5	2.679	2.637	4.437	3.901	1.266	2.583	1.317	3.082	
15:17:00					17.21		273.5	2.686	2.643	4.443	3.909	1.267	2.588	1.321	3.084	
15:22:16					17.31		273.0	2.678	2.635	4.435	3.902	1.269	2.585	1.317	3.076	
15:27:40					17,41		273.8	2.682	2.639	4.439	3.904	1.267	2.585	1,319	3.082	
15:33:10					17,51	47.5184	274.4	2,685	2.642	4.442	3.913	1,273	2.593	1,320	3.074	
15:38:3					17.61	47.5767	274.5	2,683	2.639	4.439	3.910	1,272	2.591	1,319	3.073	
15:43:50					17.71	47.6341	275.2	2,687	2.643	4.443	3.920	1.279	2.599	1.321	3.066	
15:49:20					17.81	47.6921	275.5	2.686	2.641	4,441	3.914	1.274	2.594	1.320	3.072	
15:54:5					17.91	47.7500	275.5	2.683	2.638	4.438	3.923	1.286	2,605	1.318	3.050	

Height Diameter Area	6.076 (in ^c) 39.198 (cm ^c)			(cm)		Final V Height Dia. avg. Area avg.	4.672 3.194 8.010	(ln)		Tested By Date Press No. Panel No.	KDG 12-16-09 1 B	Cha	175569069 CU-4A CU-4B 25.0 90		
Clock Time (min.)	Load (lbf)	Deflection Dial Reading (in.)	Pore Pressure Reading (psi)	Corrected Hieght (in.)	Strain (%)	Corrected Area (cm²)	Corrected Load (lbf)	Deviator Stress (tsf)	Corrected Deviator Stress* (tsf)	σ ₁ (tsf)	σι' (tsf)	σ ₃ ' (lsf)	p' (\si1) ((\si1)	q (σ ₁ -σ ₃)/2 (tsl)	Effective Principal Stress Ratio σ ₁ ' / σ ₃ '
16:00:33	287.7	1.011	72.2	4.695	18.01	47.8085	275.7	2.682	2.637	4.437	3.915	1.280	2.598	1.318	3.058
16:06:13	288.1	1.017	72.1	4.689	18.11	47.8672	276.1	2.682	2,637	4.437	3.921	1.286	2.603	1.318	3.050
16:11:51	288.3	1.023	72.2	4.684	18.21	47.9255	276.3	2.681	2,635	4.435	3,919	1.285	2.602	1.317	3.049
16:17:23	288.5	1,029	72.2	4.678	18.31	47.9842	276.5	2.679	2.634	4.434	3.916	1.284	2.600	1.316	3.049
16:23:00	289.3	1,034	72.1	4,672	18.41	48.0430	277.3	2.684	2.638	4,438	3.928	1.291	2.609	1.318	3.042

	Consolidation Value	jes	Final Va	alues
Height	5,414 (in.)	13,752 (cm)	Height	4.479 (in.)
Diameter	2.762 (in)	7.016 (cm)	Dia. avg.	3.179 (in)
Area	5.993 (in²)	38.665 (cm²)	Area avg.	7.935 (in ⁴)

Tested By	KDG	Project Number	175569069
Date	12-19-09	Test Number	CU-4B
Press No.	2	Data File ID	488
Panel No.	D	Lateral Pressure (psi)	35.0
•		Chamber Pressure - On (psi)	90

•									Chamber Pressure - G				re - σ ₃ (psi)	90	
			Pore						Corrected						Effective
		Deflection	Pressure	Corrected			Corrected		Deviator				p'	q	Principal
Clock Time		Dial Reading	Reading	Hleght	Strain	Corrected	Load	Deviator	Stress*	σ ₁	a ₁ '	σ ₃ '	(o ₁ '+o ₃ ')/2	(a ₁ -a ₃)/2	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	Stress (Isf)	(tsf)	(Isf)	(Isf)	(lsf)	(ISf)	(tsf)	σ ₁ ' / σ ₃ ' 1.001
0:00:00	14.2	0,001	55.0	5.414	0.00	38.6647	0.0		0.000	2.520	2.520	2.517	2.519 2.528	0.001 0.150	1.126
0:06:30	39.0	0.007	57.0	5.409	0.10	38.7046	24.8		0.297	2.817	2.678	2.378	2.526	0.402	1.126
0:13:35	81.0	0.012	60.9	5.403	0.20	38.7441	66.8		0.801	3.321	2.899	2.095	2.388	0.572	1.630
0:17:56	109.5 125.1	0.018 0.023	64.8 67.1	5.398 5.392	0.31 0.41	38.7836 38.8229	95.3 110.9		1.142 1.327	3.662 3.847	2.960 2.981	1.816 1.652	2.317	0.665	1.805
0:22:05 0:26:17	135.4	0.023	69.0	5,387	0,51	38.8622	121.2		1.449	3.969	2.963	1.512	2.238	0.726	1.960
0:30:33	143.3	0.029	70.4	5.381	0,61	38.9022	129.1		1.541	4.061	2.957	1.413	2.185	0.772	2.093
0:34:44	148.6	0.040	71.4	5,376	0.71	38.9431	134.4		1.603	4.123	2.942	1.336	2.139	0.803	2.202
0:38:55	153.8		72.4	5,370	0.81	38.9817	139.6		1.663	4.183	2.933	1.267	2.100	0.833	2.314
0:43:09	158.2		73.0	5,365	0.92		144.0		1.714	4.234	2.941	1.224	2.082	0.858	2.403
0:47:22	161.9	0.056	73.8	5.359	1.02	39.0622	147.7		1.756	4.276	2.926	1.167	2.046	0.879	2.506
0:51:36	165.6	0.062	74.1	5.354	1.12	39.1028	151.4	1.800	1.797	4.317	2.943	1,143	2.043	0.900	2.575
0:55:33	168.7	0.067	74.7	5.348	1.22	39.1420	154.5	1.835	1.832	4.352	2.939	1.104	2.021	0.917	2,662
0:59:58	171.7	0.073	75.0	5.343	1.32	39.1828	157.5	1.869	1.866	4.386	2.950	1.082	2.016	0.934	2.727
1:04:10	174.8	0.078	75.1	5.337	1.42	39.2230	160.6	1,904	1.900	4.420	2.973	1.070	2.021	0.952	2.779
1:08:23	177.6	0.084	75.6	5.332	1.52	39.2631	163.4	1.935	1,932	4.452	2.973	1.039	2.006	0.967	2.862
1:12:39	180.6	0.089	75.7	5,326	1.63		166.4		1.965	4.485	2.997	1.030	2.013	0.984	2.911
1:17:02	183.3		76.1	5.321	1.73		169.1		1.994	4.514	2.999	1.002	2.000	0.998	2.992
1:21:18	185.8		76.2	5,315	1.83		171.5		2.021	4.541	3.017	0.994	2.006	1.012	3.036
1:25:56	188.5		76.5	5.310	1.93		174,2		2.050	4.570	3.029	0.976	2.002	1.027	3,105
1:30:17	191.1		76.5	5.304	2.03		176.8		2.079	4.599	3.054	0.972	2.013 2.013	1.041	3,140 3,189
1:34:50	193.1	0.117	76.7	5.299	2.14		178.9		2.100	4.620	3.064	0.961	2.013	1.052	3,220
1:39:16	195,5		76.7	5.293	2.24 2.34		181.3 183.8		2.126 2.153	4.646 4.673	3.088 3.112	0.959 0.956	2.024	1.003	3.257
1:43:35 1:48:03	198.1 200.0		76.7 76.8	5.288 5.282	2.44		185.8		2.153	4.694	3.112	0.950	2.039	1.088	3.289
1:52:24	202.3		76.6	5.277	2,54		188.1		2.198	4.718	3.165	0.964	2.065	1.100	3.282
1:56:49	204.8		76.9	5.271	2.64		190.6		2.225	4.745	3,171	0.943	2.057	1.114	3.361
2:01:08	206.7		76.8	5,266	2.75		192.5		2.245	4.765	3.197	0.950	2.074	1.124	3.366
2:05:31	208.9		77.0	5,260	2.85		194.7		2.267	4.787	3.209	0.938	2.074	1.135	3.419
2:09:50	210.7		76.9	5,255	2.95		196.5		2.286	4.806	3.233	0,944	2.088	1.144	3.426
2:14:06	212.9	0.166	77.0	5,249	3.05	39.8802	198.7	2.316	2.309	4.829	3,249	0.937	2.093	1.156	3.466
2:18:27	214.6	0.172	76.9	5.244	3.15	39.9223	200.4	2.334	2.326	4.846	3.271	0.942	2.106	1.165	3.473
2:22:50	216.9	0.177	76.9	5.238	3.25	39.9638	202.7	2.358	2.350	4.870	3.293	0.940	2.117	1.177	3.503
2:27:14	218.7	0,183	76.9	5.233	3.35	40.0061	204.5	2.377	2.368	4.888	3.312	0.941	2.126	1.186	3.521
2:31:37	220.9	0,188	76.7	5.227	3.45	40.0483	206.6	2.399	2.391	4.911	3.354	0.960	2.157	1.197	3.493
2:36:10	223.0	0.194	76.9	5.222	3.56		208.8		2.413	4.933	3.358	0.942	2.150	1.208	3.563
2:40:34	224.2			5.216	3,66		210.0		2.424	4.944	3.379	0.953	2.166	1.213	3.546
2:44:52				5.211	3.76		212.0		2.444	4.964	3.390	0.943	2.167	1.223	3.593
2:49:16				5.205	3.86		213.8		2,463	4.983	3.419	0.953	2.186 2.192	1,233 1,242	3.586 3.617
2:53:42				5.200	3.96		215.7		2.482	5.002	3,434	0.949 0.955	2.205	1.250	3.619
2:58:05			76.7 76.7	5.194 5.189	4.07 4.17		217.4 219.5		2.498 2.519	5.018 5.039	3,456 3,481	0.959	2.220	1.261	3.630
3:02:24				5.183	4.27				2,526	5,046	3,494	0.965	2.230	1.264	3.620
3:06:40 3:10:58				5.178	4.27		220.3 222.0		2,542	5.062	3,543	0.900	2.270	1.272	3.550
3:15:14				5.172	4.47		223.7		2,559	5.079	3,534	0.973	2.253	1.281	3.633
3:19:30				5.167	4,57		225.2		2.573	5.093	3,562	0.986	2.274	1.288	3.614
3:23:32				5.161	4,67		226.6		2.587	5.107	3.567	0.977	2.272	1.295	3.650
3:27:48				5,156			227.7		2.596	5.116	3.587	0.989	2,288	1.299	3.629
3:31:57				5.150	4.88		228.7	2.616	2.604	5.124	3.595	0.989	2.292	1.303	3.637
3:36:03				5.145	4,98	40,6904	229.2		2.607	5.127	3.601	0.991	2.296	1.305	3.633
3:40:14				5.139	5.08	40,7338	229.9	2.625	2.612	5.132	3.636	1.021	2.329	1.307	3.560
3:44:30	245.3	0.282	76.1	5,134	5.18	40.7783	231.1	2.635	2.622	5.142	3,625	1.000	2,313	1.312	3.623
3:48:49				5,128			232.9		2.639	5.159	3.651	1.009	2,330	1.321	3.618
3;53;10				5.123	5.38		234.4		2.654	5.174	3.659	1.003	2.331	1.328	3.649
3:57:26				5.117			235.5		2.663	5.183	3.681	1.015	2.348	1.333	3.627
4:01:39				5.112			237.2		2.680	5.200	3.695	1.012	2.354	1.341	3.650
4:05:55				5.106			238.2		2.687	5.207	3.712	1.022	2.367 2.379	1.345 1.352	3.633 3.630
4:10:17				5.101	5.79		239,6		2.700	5.220	3.731	1.028	2.379	1,360	3.643
4:14:38				5.095 5.090			241.4 242.8		2.717 2.730	5.237 5.250	3.749 3.785	1.029	2.418	1.366	3.598
4:18:59	257.0	0,326	13.4	3.080	J.98	41,1001	242.0	2.140	2.130	5.250	5.103	4.002			

Final Values Tested By KDG Consolidation Values 12-19-09 Height 5.414 (in.) 13.752 (cm) Height 4,479 (in.) Date 3.179 (in) 2.762 (in) Dia, avg. Press No. Diameter 7.016 (cm) 7,935 (in*) 5.993 (in⁴) 38,665 (cm²) Area avg. Panel No. Area

 ed By
 KDG
 Project Number
 175569069

 e
 12-19-09
 Test Number
 CU-48

 is No.
 2
 Data File ID
 4BB

 el No.
 D
 Lateral Pressure (psi)
 35.0

 Chamber Pressure (psi)
 90

Mea -	35,000 (5.17)				Alea avg.				FERRET 190.				re - σ ₃ (psi)	90	
		D - 0 1	Pore	0			Commented		Corrected Deviator				þ,	q	Effective
Clock Time	l.oad	Deflection Dial Reading	Pressure Reading	Corrected Hieght	Strain	Corrected	Corrected Load	Deviator	Stress*	σ,	o ₁ *	σ_3	(σ ₁ '+σ ₃ ')/2	(o ₁ -o ₃)/2	Principal Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	Stress (Isf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	σ ₁ ' / σ ₃ '
4:23:19	258,6	0.331	75.6	5.084	6.10	41,1744	244.4	2.760	2.745	5.265	3.784	1.036	2.410	1.374	3.651
4:27:43	260.0	0.337	75.4	5.079	6.20	41.2195	245.8		2.757	5.277	3.810	1.050	2.430	1.380	3.628
4:32:01	261.4	0.342	75.5	5.073	6.30	41.2641	247.2		2.770	5.290	3.819	1.046	2,433	1,386	3.650
4:36:25	262.8	0.348	75.3	5.068	6.40	41.3087	248.6		2.782	5.302	3.841	1.056	2.449	1.393	3.636
4:40:50	264.1	0.353	75.3	5.062	6.50	41.3534	249.9		2.793	5.313	3.853	1.057	2.455	1.398	3,646
4:44:57	268.2	0,359	75.4	5.057	6.60	41.3982	254.0		2.836	5.356	3,888	1.049	2.468	1.419	3,706
4:47:50	269.6	0,364	75.1	5.051	6.71	41.4436	255.4	2.866	2.849	5.369	3,922	1.070	2.496	1.426	3.664
4:50:43	271.0	0.370	75.2	5.046	6.81	41.4894	256.8		2.861	5,381	3,926	1.062	2.494	1.432	3,696
4:53:31	271.8	0.375	75.1	5.040	6.91	41.5341	257.5		2.866	5.386	3.941	1.072	2.506	1.434	3,677
4:56:22	272.8	0.373	75.0	5.035	7.01	41.5793	258.6		2.875	5,395	3,957	1.080	2.518	1.439	3,665
4:59:13	273.7	0.386	74.9	5.029	7,11	41.6249	259.5		2,881	5,401	3,968	1.084	2.526	1.442	3.661
5:02:03	274.6	0.392	74.9	5.024	7.21	41,6705	260.4	2.905	2.887	5,407	3.974	1.084	2.529	1,445	3.666
5:04:54	276.0	0.397	74.9	5.018	7.31	41.7162	261.8		2.900	5,420	3.994	1.091	2.542	1.451	3.661
5:07:47	276.8	0.403	74.6	5,013	7.42	41.7623	262.6		2.905	5,425	4.019	1,111	2.565	1.454	3.619
5:10:38	277.7	0,408	74.8	5,007	7.52	41.8079	263.5		2.912	5.432	4.011	1.096	2.554	1.457	3.659
5:13:26	278.8		74.7	5.002	7.62		264.6		2.920	5.440	4.027	1.104	2.566	1.461	3.647
5:16:15	279.9		74.5	4,996	7,72		265.7		2,929	5.449	4.046	1.114	2.580	1,466	3.633
5:19:01	280.8		74.5	4.991	7.82	41.9457	266.6		2,935	5.455	4.052	1.114	2.583	1,469	3,637
5:21:51	281.9	0.430	74.5	4.985	7.92		267.7		2.944	5.464	4.062	1,115	2.588	1,474	3.644
5:24:42	282.9		74,4	4.980	8.03	42.0387	268.7		2.952	5,472	4,076	1.122	2.599	1,477	3.633
5:27:30	283.6		74.1	4.974	8.13		269.3		2.956	5.476	4.104	1.145	2.624	1,479	3.583
5:30:21	285.0		74.3	4,969	8.23		270.8		2.968	5,488	4.098	1.127	2.612	1.485	3.635
5:33:11	285.8		74.2	4.963	8.33		271.6		2.973	5,493	4,111	1.135	2.623	1.488	3.622
5:36:02	286.8		74,1	4.958	8.43		272.6		2.981	5.501	4.128	1.144	2.636	1.492	3.607
5:38:55	287.8		74.2	4.952	8.53		273.6		2.988	5.508	4,131	1.140	2.635	1,496	3.625
5:41:44	288.7		74.1	4.947	8.64	42.3191	274.5		2.995	5.515	4.142	1.145	2.643	1,499	3.619
5:44:35	289.7		74.0	4.941	8.74	42.3661	275.5	3.024	3,002	5.522	4.158	1.153	2.655	1,503	3.607
5:47:25	290.8		73,4	4.936	8.84	42,4134	276.6	3.033	3.010	5.530	4.211	1.198	2.704	1.507	3.516
5:50:14	291.4			4.930	8.94		277.2		3,013	5,533	4.171	1.155	2.663	1.508	3.612
5:52:57	292.5		73.9	4.925	9.04		278.3		3.021	5.541	4.186	1.162	2.674	1.512	3.602
5:55:48				4.919	9.14		279.0		3.025	5.545	4.200	1.173	2.686	1.514	3.582
5:58:34	294.0			4.914	9.24		279.8		3.031	5.551	4.201	1.168	2.685	1.517	3,597
6:01:22				4.908	9,35		280.4	3,057	3.034	5.554	4.211	1,175	2.693	1.518	3.585
6:04:13				4.903	9.45	42.6991	281.3	3.063	3,040	5.560	4.222	1.180	2.701	1.521	3.579
6:07:01	295,6			4.897	9.55		281.4	3.061	3,037	5.557	4.246	1.206	2.726	1,520	3.520
6:09:47	296,8			4.892	9.65		282.6		3,046	5.566	4.232	1.183	2.707	1,524	3.578
6:12:36				4.886	9.75		283.8		3.056	5.576	4.249	1.190	2.719	1.530	3.571
6:15:24				4.881	9.85	42,8914	283.9	3.078	3.053	5.573	4.256	1.201	2.729	1.528	3.545
6:18:12				4.875	9.96	42,9399	284.9	3.085	3.060	5.580	4.257	1.195	2.726	1.531	3.564
6:21:03	299.8	0.546	73.3	4.870	10.06	42.9882	285.5	3,089	3.063	5.583	4.266	1,200	2.733	1.533	3.555
6:23:51	300.5	0.551	73.2	4.864	10.16	43.0368	286.3	3.094	3.068	5.588	4.277	1,206	2.742	1.536	3.546
6:26:42	301.2	0.557	73.1	4.859	10,26	43.0855	286.9	3.097	3.071	5.591	4.294	1,220	2.757	1.537	3.520
6:29:35	301.7	0,562	73.2	4.853	10,36	43.1345	287.4	3.099	3.073	5.593	4.283	1.207	2.745	1.538	3.548
6:32:26	302.6	0,568	73.2	4.848	10.46	43.1835	288.4	3,106	3.080	5.600	4.295	1,213	2.754	1.541	3.541
6:35:19	303.3	0.573	73,0	4.842	10.57	43.2326	289.1	3,109	3,083	5.603	4.313	1.227	2.770	1,543	3.514
6:38:12	304.3	0.579	73.1	4.837	10.67	43,2821	290.1	3,117	3,090	5.610	4.310	1.218	2.764	1,546	3.540
6:41:08	304.8	0.584	73.0	4.831	10.77	43,3312	290.6	3.118	3.091	5.611	4,319	1.225	2.772	1,547	3.526
6:44:01	305.5	0.590	72.9	4.826	10.87	43,3800	291.3	3.123	3.095	5,615	4.331	1.233	2.782	1.549	3.513
6:46:59	306.1	0.595	72.9	4.820	10.97	43,4302	291.9	3.125	3.098	5,618	4.333	1.232	2.782	1.550	3.516
6:49:52		0.601	72.9	4.815	11.07	43.4792	292.8	3.131	3.104	5,624	4.340	1.234	2.787	1.553	3,517
6:52:52	308.0	0,606	72.7	4.809	11.18	43.5292	293.8	3.139	3.111	5.631	4.356	1,243	2.800	1.557	3.505
6;55;48	308.0	0,612	72.2	4.804	11.28	43.5789	293.8	3,135	3.107	5.627	4.390	1.280	2.835	1,555	3.430
6:58:44	308.7	0,617	72.7	4.798	11.38	43.6291	294.5	3,139	3.110	5.630	4,361	1.248	2.805	1.557	3.495
7:01:37	309.2	0.623	72.6	4,793	11.48	43.6787	295.0	3,141	3.112	5.632	4,369	1,254	2.812	1.557	3.483
7:04:35	309.8	0.628	72.4	4.787	11.58	43.7288	295.6	3.143	3.114	5.634	4,384	1.267	2.826	1.559	3.460
7:07:33	310.2	0.634	72.5	4.782	11.68	43,7797	296.0	3.143	3.114	5.634	4,377	1.260	2.819	1.558	3.473
7:10:31	311.1	0.639	72.5	4,776	11.78	43.8296	296.9		3.121	5.641	4.387	1.263	2.825	1.562	3.473
7:13:31	311.7	7 0.645	72.4	4.771	11.89	43.8802			3.122	5.642	4.396	1.271	2,833	1.563	3.459
7:16:29	311.9	0.650	72.4				297.7		3.121	5,641	4.392	1.268	2,830	1.562	3,463
7:19:30	312.6	0.656	72.4	4.760	12.09	43,9821	298.3	3.154	3.124	5.644	4.397	1.270	2.833	1.563	3,462

Final Values Consolidation Values 5.414 (in.) 13.752 (cm) Height 4.479 (in.) Height 3.179 (in) Dia. avg. 2.762 (in) 7.016 (cm) Diameter 7.935 (in²) 5.993 (in*) 38.665 (cm²) Area avg. Area

Tested By KDG
Date 12-19-09
Press No. 2
Panel No. D

Project Number 175569069

Test Number CU-48

Data File ID 4BB

Lateral Pressure (psi) 35.0

Per Pressure - To (rsi) 90

								**************************************				Cha	90		
			Pore						Corrected						Effective
		Deflection	Pressure	Corrected			Corrected		Deviator				p'	q	Principal
Clock Time	Load	Dial Reading		Hieght	Strain	Corrected	Load	Deviator	Stress*	σ_i	α_{1}	a_3	(01'+03')/2	(\sigma_1-\sigma_3)/2	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	Stress (tsf)	(lsf)	(tsf)	(lsf)	(Isf)	(lsf)	(Isf)	σ_1' / σ_3'
7:22:23	313.5	0.661	72.3	4.754	12.19	44,0328	299.3	3.160	3.130	5.650	4.406	1.274	2.840	1.566	3.459
7:25:21	313.8	0.667	72.1	4.749	12.29	44.0840	299.6	3.160	3,129	5,649	4.419	1.288	2.853	1.566	3.432
7:28:17	314.1	0.672	72.3	4.743	12.39	44,1345	299.9	3.160	3.129	5.649	4.406	1.275	2.841	1.566	3.457
7:31:15	314.9	0.678	72.2	4.738	12.50	44,1859	300.7	3.164	3,133	5,653	4.419	1.284	2.851	1.568	3.443
7:34:08	314.9	0.683	72.0	4.732	12.60	44.2370	300.7	3.161	3,129	5,649	4.430	1.298	2.864	1.566	3,413
7:37:04	315.2	0.689	72.1	4.727	12.70	44.2890	301.0	3.160	3,129	5.649	4.418	1.286	2,852	1.566	3.434
7:40:04	316.0	0.694	72.1	4.721	12.80	44.3407	301.8	3,165	3.133	5.653	4.426	1.291	2.859	1.568	3,429
7:43:00	316.6	0.700	72.0	4.716	12.90	44.3919	302.4	3,167	3.135	5.655	4.437	1.299	2.868	1.569	3.416
7:45:51	316.9	0.705	72.0	4.710	13.00	44.4436	302.7	3.167	3,135	5.655	4.432	1.295	2.864	1.569	3,422
7:48:46	317.5	0.711	72.0	4.705	13.10	44,4955	303.2	3,169	3.136	5.656	4.437	1.298	2.868	1.569	3,418
7:51:39	317.5	0.716	71.9	4.699	13.21	44.5479	303.3	3,166	3,132	5.652	4.439	1.303	2.871	1.568	3,405
7:54:30	318.0	0.722	71.2	4.694	13.31	44,5999	303.7	3,167	3,133	5.653	4.487	1.351	2,919	1,568	3,321
7:57:21	318,0	0.727	71.9	4.688	13.41	44,6521	303.8	3.163	3,130	5,650	4.435	1.302	2.869	1,566	3,405
8:00:12	318,4	0.733	71.8	4.683	13.51	44.7047	304.2	3.164	3,130	5,650	4,442	1.309	2.875	1,566	3.393
8:03:02	319.1	0.738	71.7	4.677	13.61	44.7576	304.9	3.168	3.133	5.653	4.452	1.316	2.884	1,568	3.384
8:05:48	318.9	0.744	71.8	4.672	13.71	44.8099	304.7	3.161	3.127	5.647	4,439	1.309	2.874	1.565	3.391
8:08:37	319.4	0,749	71.8	4.666	13.82	44.8629	305.2	3.163	3.129	5.649	4,445	1.313	2.879	1.566	3.384
8:11:25	319.7	0.755	71,7	4,661	13.92	44.9156	305,5	3.163	3.128	5.648	4,450	1.320	2.885	1,565	3.372
8:14:13	320.8	0.760	71.5	4.655	14.02	44.9689	306.6	3.170	3.135	5.655	4,473	1.335	2.904	1.569	3.351
8:17:02	320.5	0.766	71.7	4,650	14.12	45.0219	306.3	3.164	3.129	5.649	4.449	1.318	2.883	1.566	3.376
8:19:47	320.9	0.771	71.6	4.644	14.22	45.0754	306.7	3.164	3.128	5,648	4.455	1.323	2.889	1.566	3.366
8:22:33	321.3	0.777	71.5	4.639	14.32	45.1290	307.1	3.164	3.128	5.648	4.461	1.330	2.896	1,566	3.354
8:25:22	321.4	0.782	71.6	4.633	14.43	45,1825	307.2	3.161	3,125	5.645	4.451	1.323	2.887	1.564	3.363
8:28:07	321.7	0.788	71.6	4.628	14.53	45.2362	307.5	3.161	3,124	5,644	4.455	1.328	2.891	1,564	3.355
8:30:53	322.0	0.793	71.5	4.622	14.63	45.2899	307.7	3.160	3.123	5,643	4.458	1.332	2.895	1,563	3.346
8:33:39	321.9	0.799	71.1	4.617	14.73	45,3440	307.7	3.156	3.119	5,639	4.485	1,363	2.924	1.561	3.290
8:36:27	322.9	0.804	71.6	4.611	14.83	45,3978	308.6	3,161	3.124	5.644	4.455	1.328	2.891	1.563	3,355
8:39:13	323.5	0.810	71.5	4.606	14.93		309.3		3,126	5.646	4.464	1.334	2.899	1.565	3.345
8:41:57	322.8	0.815	71.3	4.600	15.04		308.6		3,116	5.636	4.461	1,343	2.902	1.559	3.322
8:44:40	323.5	0.821	71.5	4.595	15.14		309.2		3,118	5.638	4.454	1.333	2.893	1.561	3.342
8:47:28	322.7	0.826	71.4	4.589	15.24		308.5		3,106	5,626	4.446	1.337	2.892	1.555	3.325
8:50:16	322.5	0.832		4.584	15.34		308.3		3,101	5,621	4.447	1.344	2.896	1,552	3.309
8:53:02	322.7	0.837		4,578	15.44		308.5		3.098	5,618	4.467	1.366	2.916	1,551	3.271
8:55:48	322.5	0.843		4,573	15,54		308,3		3.092	5.612	4.439	1.344	2.891	1.547	3.303
8:58:34	322.9			4.567	15.64		308,7		3.092	5.612	4.444	1.349	2.897	1.548	3.294
9:01:22				4.562	15.75		308.9		3.091	5.611	4.449	1.356	2.902	1.547	3.282
9:04:08				4.556	15.85		309.1		3,088	5.608	4.442	1.351	2.896	1.546	3.289
9:06:54	323.7			4.551	15.95		309.5		3,088	5,608	4.441	1.350	2.896	1,546	3.290
9:09:44				4.545	16.05		310.1		3,091	5,611	4.448	1.354	2.901	1.547	3.285
9:12:30				4.540	16.15		309,4		3.080	5,600	4.453	1.371	2.912	1.541	3.249
9:15:16				4,534	16,25		309,5		3.077	5,597	4.428	1.348	2.888	1.540	3.285
9:18:07					16.35		310.0		3.078	5.598	4.433	1.353		1.540	3.277
9:20:57							310.7		3.080	5,600	4,442	1.359		1.541	3.269
9:23:51									3.086	5,606	4.442	1.353		1.545	3.283
9:26:41									3.082	5.602	4.439	1.354		1.542	3,277 3,266
9:29:32					16.76		311.4		3.076	5.596	4.437	1.358		1,539	3.230
9:32:23							311,4		3.071	5,591	4.452	1.379		1,537 1,535	3.268
9:35:09									3.067	5.587	4,424	1.353		1.533	3.256
9:38:02									3.063	5.583 5.582	4.425 4.429	1,359 1,364		1.533	3.246
9:40:52									3.062					1,532	3.260
9:43:41	325.9	9 0,936	71.2	4.479	17.27	46.7358	311.7	3.101	3.058	5,578	4,415	1.354	2.000	1,000	J.200

C		
ht 5.839 (in.) 14.832 ((cm) Height	4.765 (in.)
neter 2.743 (in) 6.967 ((cm) Dia. avg.	3.195 (in)
5.908 (in²) 38.117 ((cm²) Area avg.	8.017 (in ⁴)
	(cm²) Area avg.	

Tested By	KDG
Date	12-15-09
Press No.	1
Panel No.	Ç

Project Number 175569069

Test Number CU-4C

Data File ID 4C

Lateral Pressure (psi) 45.0

Area	5.908	\tit /	38,117	(CIII)		Area avg.	8.017	(1117)		Paner No.		_		essure (bai)	45.0
												Cha	imber Pressu	re - 03 (psi)	90
			Pore						Corrected						Effective
		Deflection	Pressure	Corrected			Corrected		Deviator				b,	q	Principal
Clock Time	Load	Dial Reading	Reading	Hieght	Strain	Corrected	Load	Deviator	Stress*	σ_1	σ_{i}	α ₃ '	(o1'+o3')/2	(0,-03)/2	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	Stress (Isf)	(tsf)	(tsf)	(tsf)	(lsf)	(tsf)	(tsf)	σ ₁ ' / σ ₃ '
													3.236	0.004	1,002
0:00:00			45.1	5.839	0.00	38.1171	0.0		0,000	3.240	3.240	3.233			
0:05:59	21.1	-0.013	45,9	5.833	0.10	38.1562	8.6	0.105	0,104	3.344	3.285	3.173	3.229	0.056	1.035
0:12:18	68.3	-0.007	50.1	5.827	0.20	38.1938	55.8	0.679	0.679	3.919	3.555	2.870	3.213	0.343	1.239
0:19:09	117.6	-0.001	53.6	5.822	0.30	38.2318	105.1	1.278	1.277	4.517	3.903	2.618	3.261	0.642	1,491
0:25:03		0.005	55.9	5,816	0.40	38.2712	130.9		1.589	4.829	4.049	2.453	3.251	0.798	1.651
													3.198	0.894	1,776
0:30:40			58.0	5.810	0,50	38.3089	146.8		1.780	5.020	4.092	2.305			
0:36:17	171.7	0.016	59.8	5.804	0.60	38.3474	159.2	1.930	1.929	5,169	4.112	2.176	3.144	0.968	1.890
0:41:38	181.4	0.022	61.2	5.798	0.70	38,3860	168.8	2.045	2.043	5.283	4.125	2.074	3.099	1.025	1.989
0:47:14	189.5	0.028	62.7	5.792	0,80	38.4250	177.0	2.142	2.140	5,380	4.112	1.965	3.038	1.073	2.092
0:52:39			63.8	5,787	0.90	38.4634	183.5	2,218	2,216	5.456	4.111	1.888	2.999	1.111	2.178
0:57:57			64.8	5,781	1.00	38.5023	188.9		2,279	5.519	4.100	1.813	2.957	1,143	2.261
													2,929	1.178	2.345
1:03:27			65.7	5.775	1.10	38.5418	194.9		2.349	5.589	4.107	1.751			
1:08:52	212.1	0.051	66.2	5.769	1.20	38.5806	199.5	2.405	2.402	5.642	4.121	1.712	2.917	1.204	2.407
1:14:21	216.1	0.057	67.0	5.763	1.30	38.6193	203.6	2.451	2.448	5.688	4,108	1,653	2.880	1.227	2.485
1:19:36	220.2	0.063	67.5	5.757	1.40	38,6585	207,7	2.498	2.495	5.735	4,119	1,617	2.868	1.251	2.547
1:25:17			68.2	5.752	1.50	38.6979	211,9	2,546	2.542	5.782	4.118	1.569	2.844	1.275	2.625
						38.7371	215.3		2.581	5.821	4.137	1,549	2,843	1.294	2.670
1:30:51			68.5	5,746	1,60								2.827	1.312	2.731
1:36:37	231.1	0,081	69.0	5.740	1.70	38.7769	218.5		2.616	5.856	4.139	1.516			
1:42:21	i 234.6	0.086	69.3	5.734	1.80	38.8160	222.0	2,660	2.655	5,895	4.152	1.490	2.821	1,331	2.787
1:47:55	237.7	0.092	69.5	5.728	1.90	38.8557	225.2	2.695	2,690	5.930	4.173	1.476	2.824	1.349	2.828
1:53:43		0.098	69.9	5.722	2.00	38.8952	228.0	2.726	2.721	5.961	4.174	1.446	2.810	1.364	2.887
1:59:32			70.1	5.717	2.10		230.6		2.749	5.989	4.192	1,436	2.814	1.378	2.919
									2.788	6.028	4.203	1.408	2.806	1.397	2.984
2:05:05			70.4	5.711	2.20									1.409	3.009
2:10:35	248.9	0.115	70.5	5.705	2.30				2.811	6.051	4.221	1,403	2.812		
2:16:08	3 251.3	0.121	70.7	5.699	2.40	39.0546	238.7	2.842	2.836	6.076	4.232	1,388	2.810	1.422	3.048
2:21:34	254.1	0,127	70.9	5.693	2,50	39.0946	241.5	2,873	2.866	6.106	4.252	1.378	2.815	1.437	3.085
2:27:09		0,133	70.9	5.687	2.60	39.1352	243.9	2,898	2.892	6.132	4.275	1.377	2.826	1.449	3.106
				5.682	2.70				2.914	6.154	4.280	1.360	2.820	1.460	3.148
2:32:47											4.303	1.357	2.830	1.473	3.171
2:38:20				5.676	2.80				2.939	6.179				1.486	3.215
2:44:04	263.5	0.151	71.4	5.670	2,90	39.2560	251.0		2.966	6.206	4.315	1.342	2.828		
2:49:48	5 265.8	0.156	71.3	5.664	3.00	39.2964	253.2	2.997	2.989	6.229	4.339	1.343	2.841	1.498	3.231
2:55:20	267.6	0.162	71.4	5.658	3.10	39.3368	255.0	3.015	3.007	6.247	4.350	1.337	2.843	1.507	3,255
3:00:54				5.652	3.20	39.3774	257.4	3.040	3,032	6.272	4.373	1,335	2.854	1.519	3.277
3:06:39				5.646	3.30				3,054	6.294	4.398	1,337	2.867	1.530	3.290
										6.313	4.406	1,326	2.866	1.540	3.322
3:12:10				5.641	3.40				3,073				2.880	1.549	3.327
3:17:5	4 275.8	0.186	71,5	5.635	3.50				3,091	6.331	4.429	1.331			
3:23:30	278.5	0.191	71,7	5.629	3.60	39.5408	266.0	3.128	3.119	6.359	4.443	1,318	2.880	1.563	3.372
3:28:58	3 280.3	0.197	71.6	5.623	3.70	39.5820	267.8	3,146	3.137	6.377	4.470	1.326	2.898	1.572	3.370
3:34:30	282.1	0.203	71.6	5.617	3.80	39.6230	269.5	3,163	3.153	6.393	4.484	1.323	2.903	1.580	3.389
3:40:0				5.611	3.90			3,185	3.175	6.415	4.505	1.323	2.914	1.591	3.405
				5.606	4,00				3.194	6.434	4,531	1.330	2.930	1,600	3,407
3:45:3													2.931	1,609	3,435
3:50:5	5 287.9			5,600	4.10				3.211	6.451	4.540	1,322			
3:56:13	3 289.7	0.226	71.6	5.594	4.20	39.7886	277.1	3.239	3.228	6.468	4,563	1,328	2.946	1.618	3.435
4:01:43	3 291.4	0.232	71.6	5.588	4,30	39.8304	278.8	3.255	3,244	6.484	4,576	1.324	2.950	1.626	3.455
4:07:0	4 293.3	3 0.238	71.5	5.582	4.40	39.8721	280.7	3.274	3.263	6.503	4.601	1.330	2.966	1.635	3.458
4:12:2:				5,576	4.50				3.276	6.516	4.617	1.335	2.976	1.641	3.460
									3.298		4.639	1.333	2.986	1.653	3.479
4:17:4					4.60									1.661	3.473
4;23;1:	5 298.	7 0,256	71.3	5.565	4.70				3.315		4.665	1.343	3.004		
4:28:4	1 300.2	0.261	71,4	5.559	4.80	40.0393	287.6	3.340	3.328	6,568	4.673	1.338	3.006	1,668	3.493
4:34:0	8 302.2	2 0.267	71.3	5.553	4.90	40,0814	289.7	3.360	3,348	6,588	4.699	1.344	3.022	1,678	3.496
4:39:3					5.00				3,364		4.712	1.340	3.026	1.686	3.515
					5.10				3,374		4.733	1,351	3.042	1.691	3.502
4:45:0													3.049	1.698	3,515
4:50:2					5.20				3,389		4.747	1.351			
4:55:5	6 308.	6 0.291	71.2	5.530	5.30				3.406		4.768	1,355	3.061	1.707	3.520
5:01:2	9 309.	7 0.297	71.1	5.524	5,40	40.2932	297.2	3,429	3.416	6.656	4.784	1.361	3.073	1.711	3,514
5:06:5				5.518	5.50	40.3362	298.5	3,442	3.428	6.668	4.800	1.365	3.083	1.717	3.516
5:12:2				,	5.60				3.445		4.829	1.377	3.103	1.726	3.507
					5.70				3,459		4.837	1.371	3.104	1.733	3.529
5:18:0													3.121	1.739	3.515
5:23:3					5.80				3.470		4.860	1.382			
5:29:0	9 317.	5 0,326	70.9	5,495	5.90	40.5074	304.9	3.501	3.486	6.726	4.871	1.379	3.125	1.746	3.534

Consolidation Values Final Values Height 5.839 (in.) 14.832 (cm) Height 4.765 (in.) Diameter 2.743 (in) 6.967 (cm) Dia. avg. 3.195 (in) 5.908 (in²) 8.017 (in*) 38,117 (cm²) Area Area avg.

 Project Number
 175569069

 Test Number
 CU-4C

 Data File ID
 4C

 Lateral Pressure (psi)
 45.0

 Chamber Pressure - σ₃ (psi)
 90

												Chamber Pressure - 03 (psi			90
			Pore						Corrected						Effective
		Deflection	Pressure	Corrected			Corrected		Deviator				þ,	q	Principal
Cłock Time	Load	Dial Reading	Reading	Hieght	Strain	Corrected	Load	Deviator	Stress*	o,	σ_1	α^3	$(\sigma_1' + \sigma_3')/2$	(01-03)/2	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	Stress (tsf)	(tsf)	(tsf)	(Isf)	(tsf)	(tsf)	(tsf)	σ ₁ ' / σ ₃ '
5:34:59	318.6	0.332	70.7	5.489	6.00	40.5506	306.1	3,510	3.494	6.734	4.890	1.388	3.139	1.751	3.523
5:40:47	320,1	0.337	70.8	5.483	6.10	40,5939	307.5	3,523	3.508	6.748	4.899	1.385	3,142	1.757	3,538
5:46:28	321.4	0.343	70,6	5,477	6,20	40.6372	308.9		3.519	6.759	4.922	1.396	3.159	1.763	3.526
5:52:11	323,1		70.6	5.471	6.30	40.6804	310.5		3.534	6.774	4.936	1.396	3,166	1.770	3.537
5:58:02	324.2		70.5	5.465	6.40	40,7239	311.6		3.542	6.782	4.954	1.405	3,179	1,775	3.527
6:03:47	325,5		70.4	5.460	6.50	40.7674	313.0		3.553	6.793	4.969	1.409	3,189	1.780	3,527
6:09:24	327,3		70.4	5,454	6.60	40.8113	314.7		3.569	6.809	4.990	1.414	3,202	1.788	3.529
6:15:15	328.5		70,1	5,448	6.70	40.8549	315.9		3.579	6.819	5.020	1.434	3,227	1.793	3,500
6:21:05	329.8		70.2	5.442	6.80	40.8988	317.3		3.590	6.830	5.020	1.423	3,222	1.799	3.528
6:26:40	330.9		70.2	5.436	6.90	40.9430	318.3		3.598	6.838	5.045	1.440	3,243	1.803	3.504
6:32:24	332.4		70,0	5,430	7.00	40.9868	319.9		3.611				3.244	1.809	3,522
	333.6		69.9	5,425	7.10	41,0309			3.620	6.851	5.053	1.435	3.259	1.814	3.511
6:38:09							321.0			6.860	5.072	1,445	3.263	1.818	3,517
6:43:53	334.7		69.9	5,419	7.20	41.0750	322.2		3.629	6.869	5.081	1.445	3,278	1.823	3.507
6:49:35	336.0		69.8	5,413	7.30	41.1193	323.4		3.639	6.879	5.101	1.454			
6:55:27	337.5		69.9	5,407	7.40	41,1639	325.0		3.652	6.892	5.110	1,451	3,280	1.830	3,523
7:01:16	338.3		69,7	5.401	7.50	41,2083	325.8		3.657	6.897	5.128	1,463	3,295	1.832	3.504
7:07:04	339.1	0.425	69.6	5,395	7.60	41.2528	326.6		3.662	6.902	5.135	1.466	3,300	1.835	3,503
7:12:49	340.8		69.5	5.390	7.70	41.2974	328.3		3.677	6.917	5.157	1,472	3,315	1.842	3.502
7:18:37	341.8		69.5	5.384	7.80	41.3425	329.2		3.684	6.924	5.164	1,474	3.319	1.845	3,504
7:24:14	342.6	0.443	69,4	5.378	7.90	41.3872	330.1	3.709	3.689	6.929	5.179	1,483	3,331	1.848	3.492
7:29:56	343.8	0.448	69.2	5.372	8.00	41.4321	331.2	3.717	3.697	6.937	5.205	1.501	3,353	1.852	3,468
7:35:41	345.0	0.454	69.3	5.366	8.10	41.4774	332.5	3.727	3.707	6.947	5.205	1,491	3,348	1.857	3,491
7:41:24	345.9	0.460	69.1	5,360	8.20	41.5225	333.3	3.733	3.712	6.952	5.221	1.502	3,362	1.859	3,476
7:47:00	346.6	0.466	69.1	5.354	8.30	41,5677	334.1	3.737	3.716	6.956	5.226	1.503	3.365	1.862	3,477
7:52:35	348.0	0.472	69.0	5.349	8.40	41.6133	335.5	3.749	3.727	6.967	5.245	1.510	3.377	1.867	3.473
7:58:16	349.4	0.478	69.1	5.343	8.50	41,6585	336.9	3.760	3.739	6.979	5.254	1.508	3,381	1.873	3.485
8:03:49	350.1	0.483	68.9	5.337	8.60	41.7043	337.5	3.764	3.742	6.982	5.269	1.520	3.394	1.874	3.467
8:09:18	351.6	0.489	69.0	5.331	8.70	41.7500	339.0	3.776	3.754	6.994	5.277	1.516	3.396	1.881	3.482
8:14:52	352.6	0.495	68.8	5.325	8.80	41.7959	340.0	3.783	3.761	7.001	5.294	1.526	3.410	1.884	3.468
8:20:23	353.2		68.7	5.319	8.90	41 8416	340,7		3.764	7.004	5.304	1.534	3.419	1.885	3.459
8:25:52	354.5		68.7	5.314	9.00	41,8876	341,9		3.773	7.013	5.317	1.536	3.426	1.890	3.460
8:31:34	355.7		68.5	5.308	9.10	41.9337	343.2		3.782	7.022	5.337	1.547	3,442	1.895	3.449
8:37:14	356.6		68.6	5.302	9.20	41,9803	344.0		3.788	7.028	5.338	1.544	3.441	1.897	3.458
8:42:43	357.3		68.4	5.296	9.30	42.0262	344.8		3.792	7.032	5.354	1.555	3.455	1.899	3.443
8:48:33	358.2		68.4	5.290	9.40	42.0729	345.6		3.796	7.032	5.355	1.552	3,454	1,902	3.451
8:54:16	358.9		68.3	5.284	9.50	42,0725	346.4		3.800	7.040	5.370	1.563	3.466	1.903	3.436
8:59:49	359.7		68.3	5.279		42.1195	347.1						3.470	1.905	3.436
					9.60				3.804	7.044	5.375	1.564			
9:05:35	360.8		68.2	5.273	9.70	42.2126	348.3		3.812	7.052	5.392	1.573	3.482	1.910	3.428
9:11:16	362.0		68.2	5,267	9.80	42.2591	349.5		3.821	7.061	5,400	1.573	3.487	1.914	3.434
9:17:03	362.8		68.0	5.261	9.90	42,3062	350.2		3.824	7.064	5.412	1.581	3,496	1,916	3.424
9:22:46	363.6		67,9	5,255	10,00	42.3534	351.1		3.829	7.069	5.431	1.595	3,513	1.918	3.406
9:28:27	364.9		68,0	5,249	10.10	42.4001	352.4		3,839	7.079	5.433	1.587	3,510	1.923	3.424
9:34:18	365.3		67.8	5.244	10.20	42,4474	352.7		3.838	7.078	5.443	1.598	3,520	1.923	3.407
9:40:05	365.9		67.8	5.238	10.30	42,4946	353,4		3.841	7.081	5.447	1.599	3,523	1.924	3.406
9:45:56	367.3		67.7	5.232	10,40	42,5421	354.7		3.851	7.091	5.463	1.605	3,534	1.929	3.404
9:51:53	367.8		67.7	5.226	10.50	42.5900	355.3		3.852	7.092	5.462	1.602	3,532	1.930	3.409
9:57:37	368.2	0.600	67.6	5.220	10.60	42.6375	355.7	3.879	3.852	7.092	5.473	1.614	3,543	1.930	3.391
10:03:29	369.2	0.606	67.6	5.214	10.70	42,6852	356.6	3.885	3.858	7.098	5.475	1.609	3,542	1.933	3.401
10:09:22	369.9	0.612	67.5	5.208	10.80	42,7332	357.4	3.889	3.862	7.102	5.490	1.621	3.555	1.934	3.387
10:15:15	371.0	0.618	67.5	5.203	10.90	42,7810	358.5	3,897	3.869	7.109	5.497	1.621	3.559	1,938	3.392
10:21:02	371.8	0.624	67.4	5.197	11.00	42.8295	359.2	3.900	3.872	7.112	5.509	1.630	3,570	1.940	3.380
10:26:57	372.4	0.629	67,3	5,191	11.10	42.8771	359.9	3.903	3.875	7,115	5.515	1.634	3.574	1,941	3.376
10:32:40	373,1	0.635	67.3	5.185	11.20	42.9254	360.5	3.905	3.877	7.117	5.522	1.637	3.579	1.942	3.372
10;38:30	373.2		67.0	5.179	11.30	42.9738	360.6		3.874	7,114	5.533	1,653	3.593	1.940	3.348
10;44:22	374.2		67.2	5.173	11.40	43.0223	361.7		3.880	7.120	5.530	1,643	3.586	1.944	3.366
10:50:11	374,7		67.0	5.168	11.50	43.0712	362.1		3.881	7.121	5,541	1,653	3.597	1.944	3.352
10:56:00	374.9		67.1	5.162	11.60	43.1198	362.4		3.879	7.119	5.537	1.652	3.594	1.943	3.353
11:01:41	375.5		66.9	5.156	11.70	43.1689	362.9		3.880	7.120	5.548	1,661	3.604	1.944	3.341
11:07:31	376.0		67.0	5.150	11.80	43.2179	363.5		3.881	7.121	5.544	1.656	3.600	1.944	3.348
11:13:15	376.7		66.9	5.144	11.90	43.2669	364.2		3.884	7.124	5.556	1.665	3.611	1.946	3.337
11,10,110	5, 0.1	5.070	J0.J	V.144	17.00	10.2000	304.2	0.014	0.004	67	4.540	1.000	J. 0 1 1	.,0.10	5,551

Consolidation Values Final Values Heighl 5.839 (in.) 14.832 (cm) Height 4.765 (in.) Diameter 2.743 (in) 6.967 (cm) Dia. avg. 3.195 (in) 5.908 (in*) 8.017 (in⁴) 38.117 (cm²) Area Area avg.

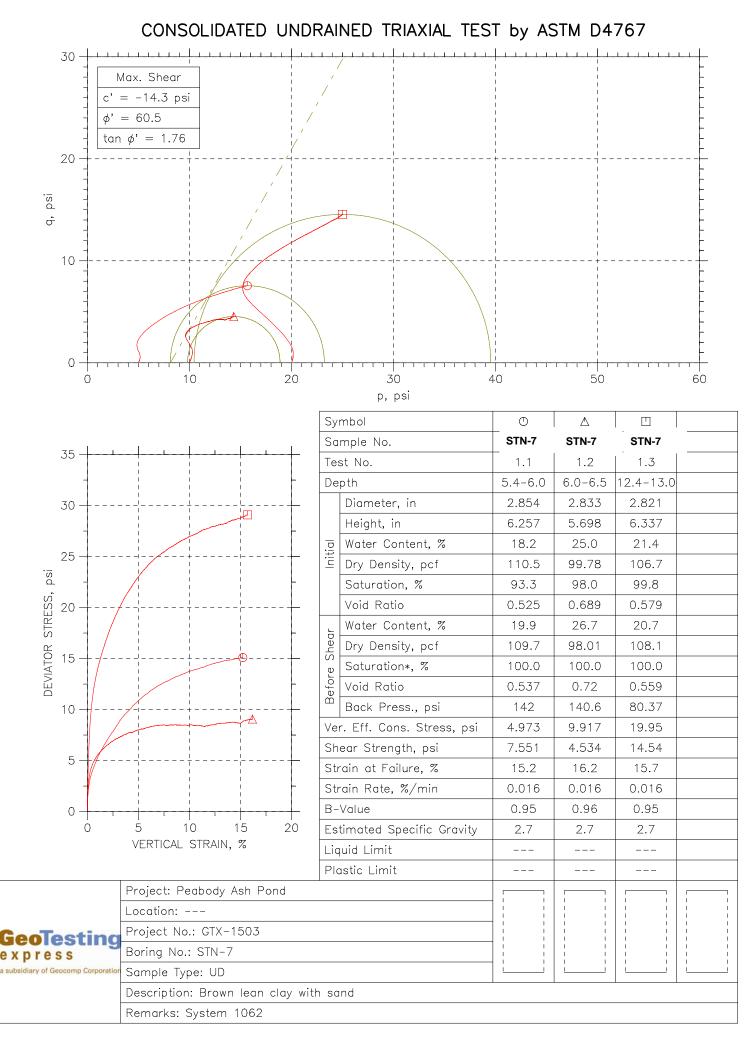
Tested By KDG
Date 12-15-09
Press No. 1
Panel No. C

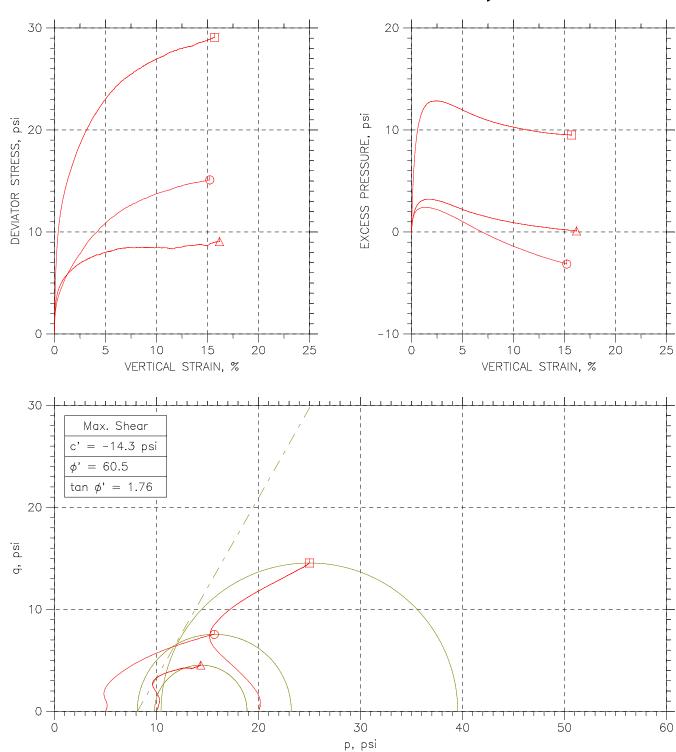
 Project Number
 175569069

 Test Number
 CU-4C

 Data File ID
 4C

 Lateral Pressure (psi)
 45.0

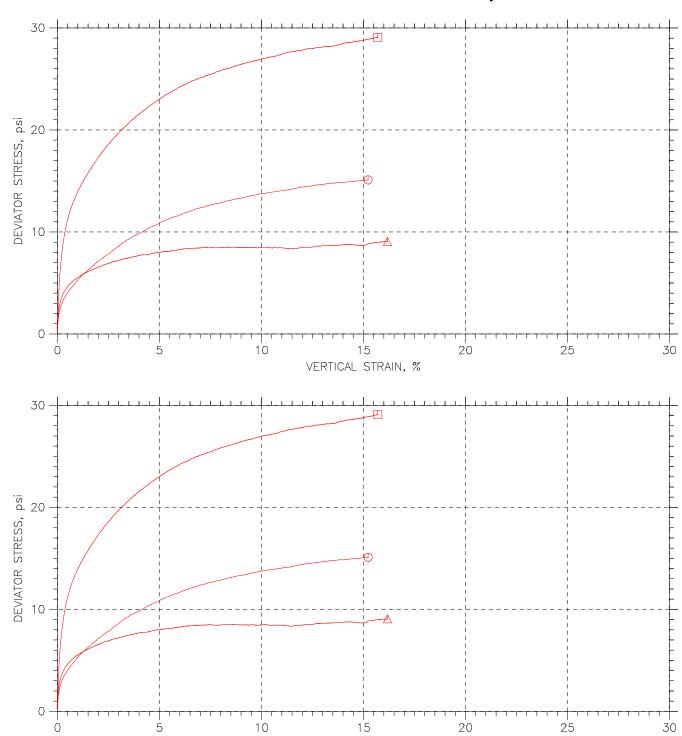

 Chamber Pressure - σ3 (psi)
 90


	Chamber Pressure - σ ₃ (psi)				90										
			Pore						Corrected						Effective
		Deflection	Pressure	Corrected			Corrected		Deviator				p ^t	q	Principal
Clock Time	Load	Dial Reading	Reading	Hieght	Strain	Corrected	Load	Deviator	Stress*	σ ₁	σ_{t}	σ_3	$(\sigma_1' + \sigma_3')/2$	(\sigma_1 \cdot \sigma_3)/2	Stress Ratio
(min.)	(lbf)	(in.)	(psi)	(in.)	(%)	Area (cm²)	(lbf)	Stress (tsf)	(lsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	σ ₁ ' / σ ₃ '
11:18:58	376.9	0.682	66.9	5,138	12.00	43.3162	364.3	3.911	3.881	7.121	5,554	1,666	3.610	1.944	3.333
11:24:34	378.0	0.688	66.8	5.133	12.10	43.3651	365.5		3.888	7.128	5,567	1.672	3.620	1.948	3.330
11:30:21	378.5	0.694	66.7	5.127	12.20	43.4146	365.9		3.889	7.129	5.571	1.675	3.623	1.948	3.325
11:35:57	379.1	0.700	66.7	5.121	12.30	43.4643	366.5		3.890	7.130	5.577	1,680	3.629	1.949	3.319
11:41:47	380.2		66.5	5.115	12.40	43.5139	367.6		3.897	7.137	5.595	1,691	3.643	1.952	3.309
11:47:35	380.7	0.711	66.6	5.109	12.50	43.5632	368.1	3.930	3.898	7.138	5.592	1.687	3.640	1.953	3.315
11:53:18	381.6		66.5	5.103	12.60	43.6135	369.0		3.902	7,142	5.603	1.694	3.649	1.955	3.308
11:58:59	382.1	0.723	66.5	5.098	12.70	43.6630	369.5								
									3.903	7.143	5.603	1,693	3.648	1.955	3.310
12:04:48	382.6		66.4	5.092	12.80	43.7137	370.1	3.937	3.905	7.145	5.612	1.701	3.657	1.956	3.300
12:10:25	383.4	0.735	66.4	5,086	12.90	43,7633	370.8		3.908	7.148	5.612	1.697	3.655	1.957	3.307
12:16:05	384.1	0.740	66.3	5.080	13.00	43.8137	371.5		3.910	7.150	5.625	1.707	3.666	1.959	3.294
12:21:46	385.3		66.3	5.074	13.10	43.8643	372.7	3.951	3.918	7.158	5.628	1.703	3.665	1.963	3.305
12:27:28	385.7	0.752	66.3	5.068	13.20	43.9146	373.1	3.951	3.918	7.158	5.634	1.709	3.671	1.962	3.297
12:33:15	385.8		66.2	5.062	13.30	43.9661	373.3		3.914	7.154	5.638	1.716	3.677	1.961	3.285
12:38:54	387.0		66.2	5.057	13.40	44.0161	374.4		3.922	7.162	5.644	1.715	3.680	1.964	3.290
12:44:31	387.2		66.0	5.051	13.50	44.0670	374.7	3.954	3.920	7.160	5.654	1.728	3.691	1.963	3.273
12:50:14	387.5	0.775	66.1	5.045	13.60	44.1183	375.0	3.952	3.918	7.158	5.647	1.722	3.684	1.962	3.280
12:55:51	388.1	0.781	66.0	5.039	13.70	44.1693	375.5	3.953	3.919	7.159	5.655	1,730	3.692	1.963	3.270
13:01:35	389.1	0,787	66.0	6.033	13.80	44.2205	376.5	3.959	3.925	7,165	5.656	1.724	3.690	1.966	3.280
13:07:24	389.3	0.793	65.9	5.027	13.90	44.2717	376.8	3.957	3.922	7,162	5.663	1.734	3.699	1.965	3.266
13:13:02	389.9	0.799	65.9	5.022	14.00	44.3233	377.4	3.959	3.924	7,164	5.663	1.732	3.697	1.965	3.269
13:18:55	390.7	0.805	65.9	5.016	14.10	44.3748	378.2	3.963	3.927	7.167	5.673	1,739	3.706	1.967	3.263
13:24:45	391.5	0.810	65.9	5.010	14.20	44.4267	379.0	3.967	3.931	7,171	5.674	1,736	3.705	1.969	3.268
13:30:28	391,9	0.816	65.7	5.004	14.30	44.4784	379.4	3.966	3.930	7.170	5.684	1,747	3.716	1.969	3.254
13:36:24	392,9	0.822	65.7	4.998	14.40	44.5303	380.4	3.972	3.936	7,176	5.689	1,746	3.718	1.971	3.258
13:42:12	393.8	0.828	65.7	4.992	14.50	44.5830	381.2	3.976	3.940	7,180	5.695	1.748	3.721	1.973	3.258
13:48:06	393.8	0.834	65.5	4.987	14.60	44.6347	381.3		3.936	7.176	5.704	1.761	3.733	1.971	3.239
13:54:02	394.4	0.840	65.6	4.981	14.70	44.6870	381.9		3.937	7,177	5.699	1.755	3,727	1.972	3.247
14:00:04	395.7	0.845	65.5	4.975	14.80	44,7394	383.2		3.945	7.185	5.714	1.762	3.738	1.976	3.243
14:06:01	396.1	0.851	65.6	4.969	14.90	44,7921	383.5		3.944	7.184	5.707	1.756	3.731	1.975	3.250
14:11:49	395.6		65.5	4,963	15.00	44,8449	383.1	3.972	3.934	7.174	5.708	1.767	3.738	1.971	3.231
14:17:44	396.5		65,6	4.957	15,10	44.8981	384.0		3,939	7.179	5.705	1.759	3.732	1.973	3.243
14:23:40	396.3		65,5	4.952	15.20		383.8		3.931	7,171	5.706	1.767	3.737	1.969	3.229
14:29:30	396.2		65,5	4.946	15,30	45,0039	383.6		3.925	7.165	5.696	1.764	3.730	1.966	3.230
14:35:18	396.5		65,4	4.940	15.40	45,0570	384.0		3.924	7.164	5.703	1.772	3.737	1.965	3.219
	396.8		65.4	4.934	15.50	45,0370	384.2		3.921		5.697		3.732	1.964	3.222
14:41:11					15.60					7.161		1.768		1.963	
14:46:58	397.0		65.3 65.3	4.928	15.70	45.1636	384.5		3.919	7.159	5.702	1.776	3.739		3.211
14:52:51	396.5			4.922		45.2176	384.0		3.909	7.149	5.696	1.780	3.738	1.958	3.200
14:58:40	397.2		65,3	4.916	15.80	45.2711	384.6		3.911	7.151	5.698	1.780	3.739	1.959	3.202
15:04:34	397.5		65,1	4.911	15.90	45,3249	385.0		3.910	7.150	5.708	1.791	3.749	1.958	3.187
15:10:27	397.4		65.2	4.905	16.00	45,3788	384.8		3.903	7.143	5.694	1.783	3.739	1.955	3.193
15:16:13	397.8		65.1	4.899	16.10	45,4336	385.3		3,903	7.143	5.701	1.791	3,746	1.955	3.183
15:21:57	398.3		65.2	4.893	16.20	45,4872	385.7	3,943	3.902	7.142	5.695	1.786	3,741	1.955	3.189
15:27:49	398.1	0.933	65.1	4.887	16.30	45,5417	385.6		3.896	7.136	5.696	1.793	3.745	1.951	3,176
15:33:29	398.5	0.939	65.1	4.881	16.40	45,5966	386.0		3.895	7.135	5.693	1.791	3.742	1.951	3.179
15:39:14	399.4	0.945	65.1	4.876	16.50	45,6504	386.9	3.940	3.899	7.139	5.701	1.795	3,748	1.953	3.176
15:45:00	399.8	0.951	65.2	4.870	16.60	45,7052	387.3	3.940	3.898	7.138	5.694	1.789	3,741	1.953	3.183
15:50:41	399.6	0.956	65.0	4.864	16.70	45,7601	387.0	3,933	3.891	7.131	5.697	1.800	3,748	1.949	3,166
15:56:20	400.4	0.962	65.1	4.858	16.80	45.8158	387.8	3.936	3.894	7.134	5.697	1,795	3.746	1.951	3,173
16:01:55	400.9	0.968	65.0	4.852	16,90	45.8704	388.3	3,936	3.894	7.134	5.702	1.801	3.751	1.950	3,166
16:07:38	400.9	0.974	64.9	4.846	17.00	45.9256	388,4	3,932	3,889	7.129	5.707	1.811	3.759	1.948	3.152
16:13:11	401,6	0,980	65.0	4.841	17.10	45.9809	389.1	3,934	3.891	7.131	5.701	1.803	3.752	1.949	3.162
16:18:47	401.8		64.9	4.835	17.20	46.0365	389.2		3.888	7.128	5,705	1,810	3.757	1.948	3.152
16:24:29	402.1		64.9	4.829	17.30	46.0923	389.6		3.887	7.127	5.697	1,804	3.751	1.947	3.159
16:30:00	402.3		64.8	4.823	17.40	46.1485	389.8		3.883	7,123	5,703	1,812	3.757	1.945	3,147
16:35:34	403.0		64.9	4.817	17.50	46.2042	390.4		3.885	7.125	5.698	1.806	3.752	1.946	3.156
16:41:03	403.4		64.8	4.811	17.60	46.2600	390.9		3.885	7.125	5.704	1,812	3.758	1.946	3.147
16:46:37	403.0		64.8	4.805	17.70	46.3166	390.4		3.875	7,115	5.696	1,814	3.755	1.941	3.141
16:52:08	404,2		64.8	4.800	17.80	46.3728	391.7		3.882	7.122	5.704	1,815	3.760	1.945	3.143
16:57:36	405.0		64.7	4.794	17.90	46.4291	392.4		3.885	7.125	5.717	1,825	3.771	1.946	3.133
10.07,30	400.0	1.021	04.7	4.1 34	17.50	40.4201	J32.4	5.550	3.005	1.160	J.7 17	1,020	V.111	1.040	0.100

Revision Date: 1-2008

	Consolidation Val	ues	Final V	/alues	Tested By	KDG	Project Number	175569069
Height	5.839 (in.)	14.832 (cm)	Height	4.765 (in.)	Date	12-15-09	Test Number	CU-4C
Diameter	2.743 (in)	6.967 (cm)	Dia. avg.	3.195 (in)	Press No.	1	Data File ID	4C
Area	5.908 (in ^c)	38,117 (cm²)	Area avg.	8.017 (in*)	Panel No.	С	Lateral Pressure (psi)	45.0
			-				Chamber Pressure - σ_3 (psi)	90
		Pore			Corrected			Effective

Clock Time (min.)	Load (lbf)	Deflection Dial Reading (in.)	Pore Pressure Reading (psi)	Corrected Hieght (In.)	Strain (%)	Corrected Area (cm²)	Corrected Load (lbf)	Deviator Stress (tsf)	Corrected Deviator Stress* (lsf)	o ₁ (Isf)	σ ₁ * (Isf)	σ ₃ ' (tsf)	p' (σ ₁ '+σ ₃ ')/2 (ts1)	q (σ ₁ -σ ₃)/2 (tsf)	Effective Principal Stress Ratio σ_1' / σ_3'
17:03:06	404.7	1.032	64.8	4.788	18.00	46.4858	392.2	3.923	3.878	7.118	5.702	1.818	3.760	1.942	3.137
17:08:42	405.7	1.038	64.7	4.782	18.10	46.5424	393.1	3.928	3.882	7.122	5.710	1.821	3.766	1.945	3.136
17:14:29	405.6	1.044	64.8	4.776	18.20	46.5998	393.1	3.922	3.877	7,117	5.701	1.817	3.759	1.942	3.137
17:20:20	405.8	1.050	64.7	4.770	18.30	46.6564	393.3	3.919	3.873	7,113	5.703	1,823	3.763	1.940	3.128
17:26:02	405.8	1.056	64.8	4.765	18.40	46,7139	393.3	3.915	3.869	7.109	5.694	1.818	3.756	1.938	3.132



	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Ф	ST-4	1.1	5.4-6.0	jm	11/5/09	mm		1503-1.1.dat
Δ	ST-4	1.2	6.0-6.5	JM	11/4/09	ММ		1503-1.2.dat
	STN-15	1.3	12.4-13.0	JM	11/4/09	MM		1503-1.3.dat

	GeoTesting
express	express
a subsidiary of Geocomp Corporation	a subsidiary of Geocomp Corporation

Project: Peabody Ash Pond	Location:	Project No.: GTX-1503
Boring No.: STN-7	Sample Type: UD	

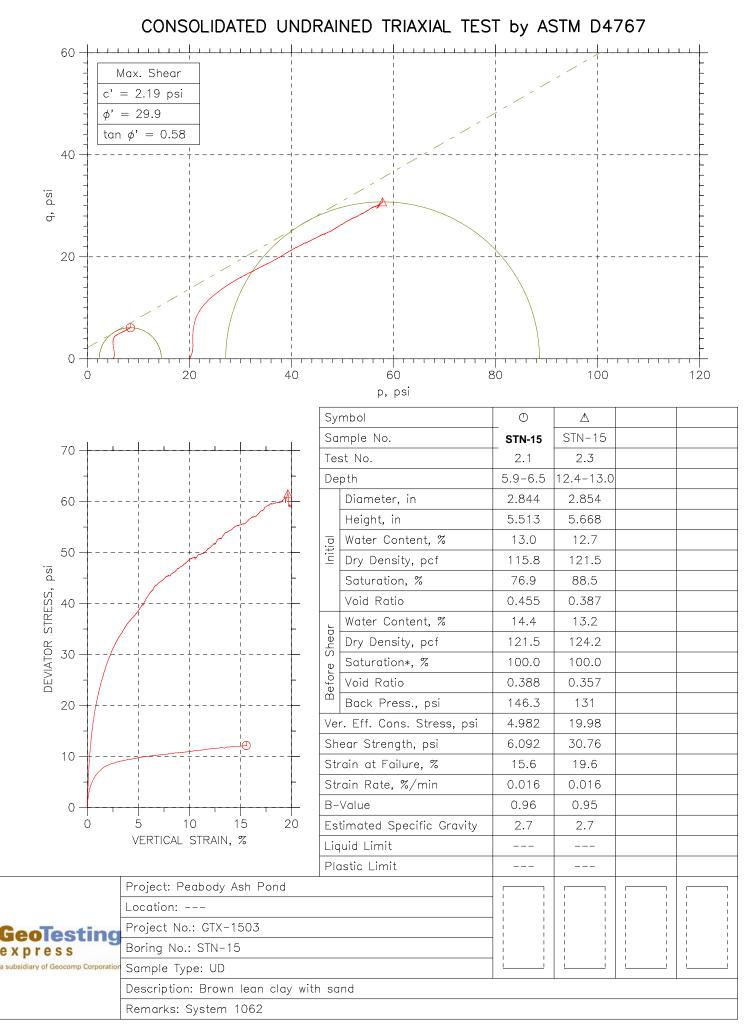
Description: Brown lean clay with sand

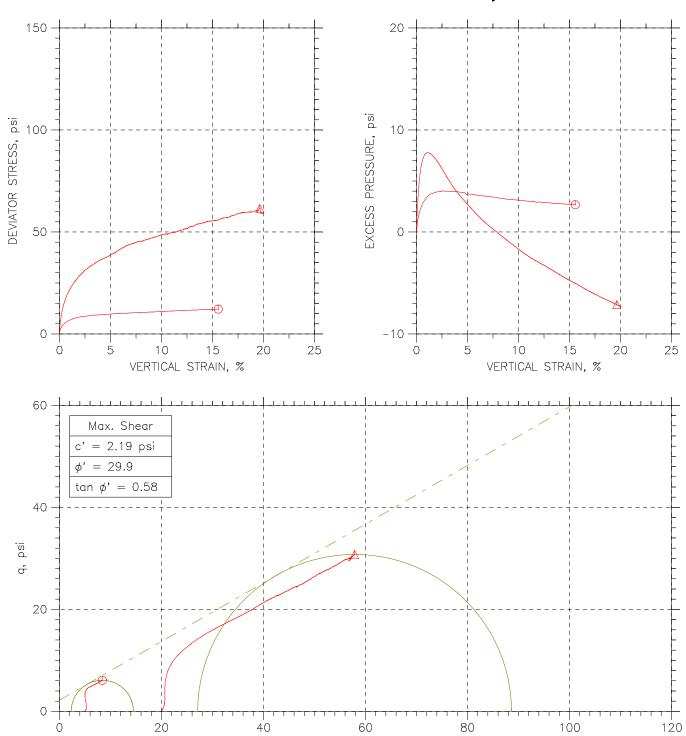
	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Ф	ST-4	1.1	5.4-6.0	jm	11/5/09	mm		1503-1.1.dat
Δ	ST-4	1.2	6.0-6.5	JM	11/4/09	ММ		1503-1.2.dat
	STN-15	1.3	12.4-13.0	JM	11/4/09	ММ		1503-1.3.dat

15

VERTICAL STRAIN, %

20

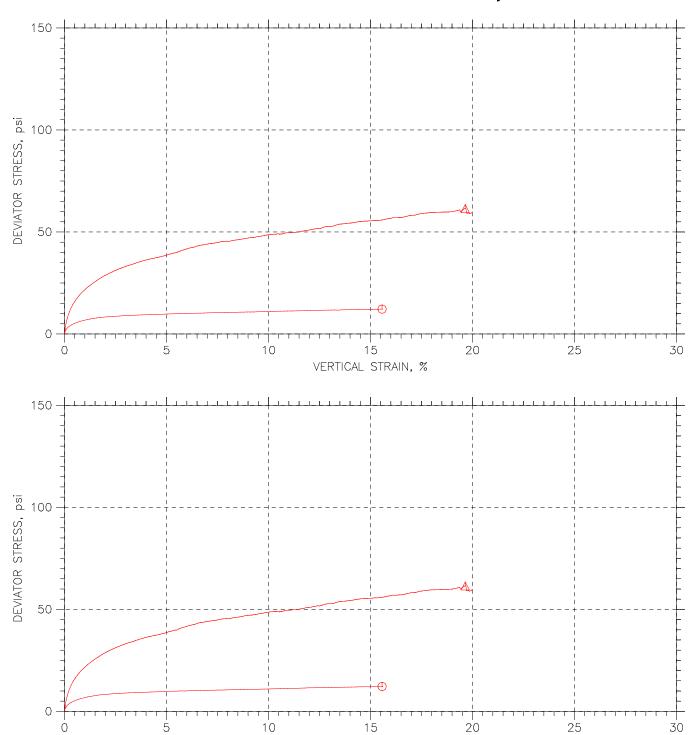

GeoTestino	0	-
express	7	
a subsidiary of Geocomp Corporat	ion	ı


Project: Peabody Ash Pond	Location:	Project No.: GTX-1503
Boring No.: STN-7	Sample Type: UD	

25

30

Description: Brown lean clay with sand

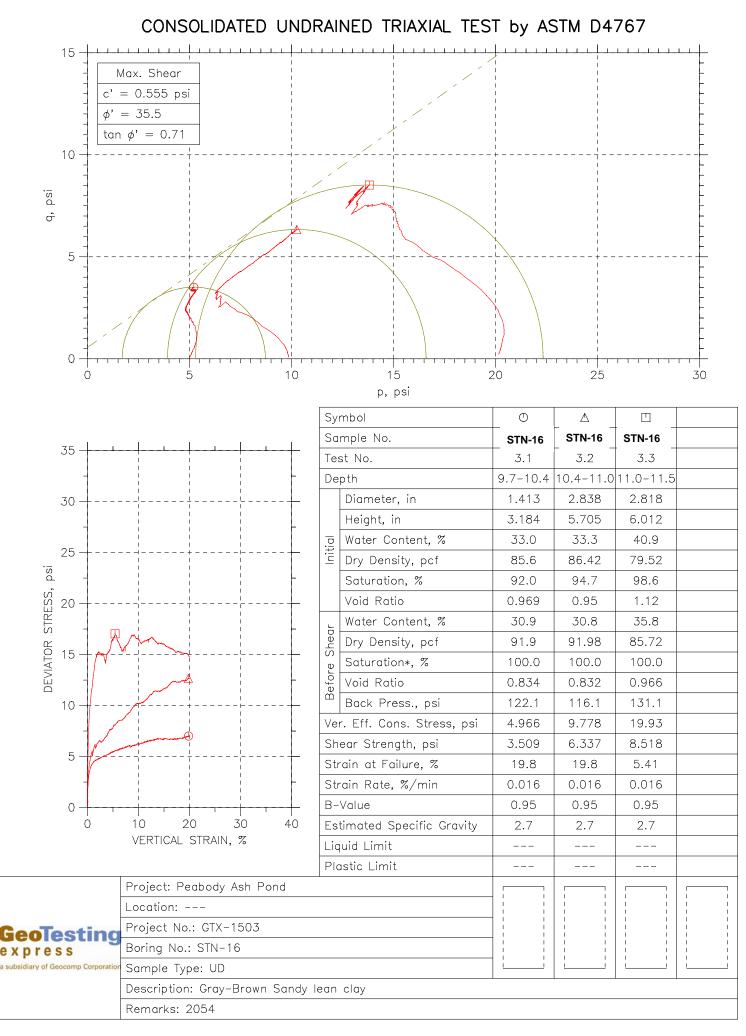

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0	ST-1	2.1	5.9-6.5	jm	11/6/09	mm		1503-2.1.dat
Δ	STN-15	2.3	12.4-13.0	jm	11/6/09	mm		1503-2.3.dat

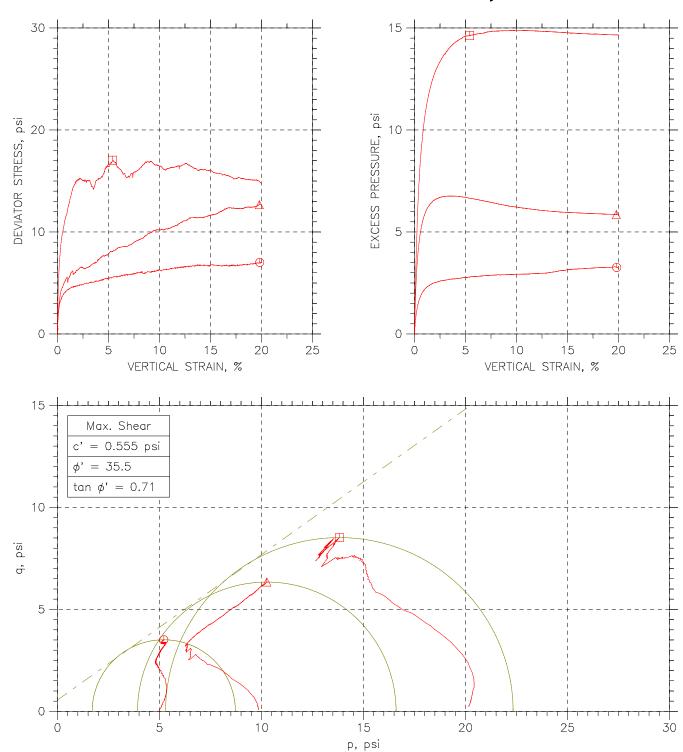
p, psi

GeoTesting	F
express	E
a subsidiary of Geocomp Corporation	[
	$\overline{}$

Project: Peabody Ash Pond	Location:	Project No.: GTX-1503
Boring No.: STN-15	Sample Type: UD	

Description: Brown lean clay with sand

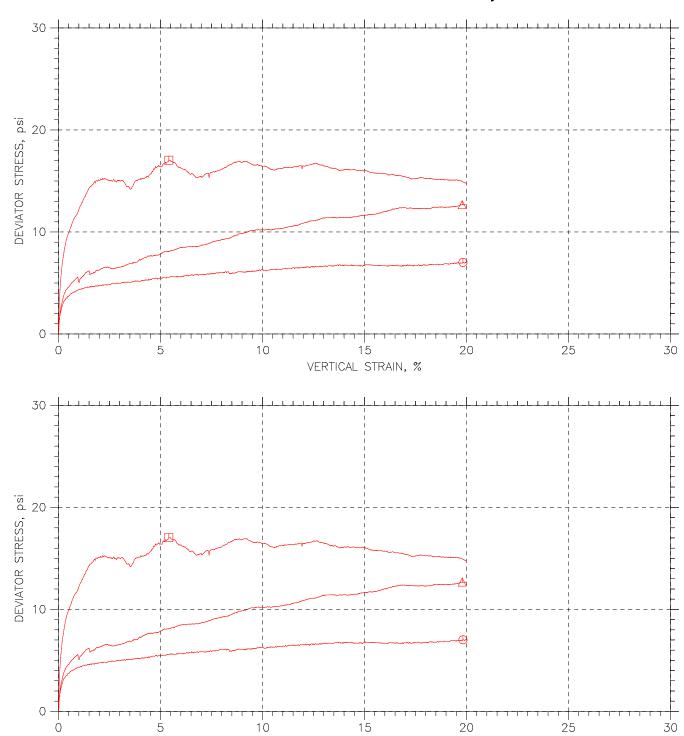

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Ф	ST-1	2.1	5.9-6.5	jm	11/6/09	mm		1503-2.1.dat
Δ	STN-15	2.3	12.4-13.0	jm	11/6/09	mm		1503-2.3.dat


VERTICAL STRAIN, %

GeoTesting	F
express	E
a subsidiary of Geocomp Corporation	[

Project: Peabody Ash Pond	Location:	Project No.: GTX-1503
Boring No.: STN-15	Sample Type: UD	

Description: Brown lean clay with sand

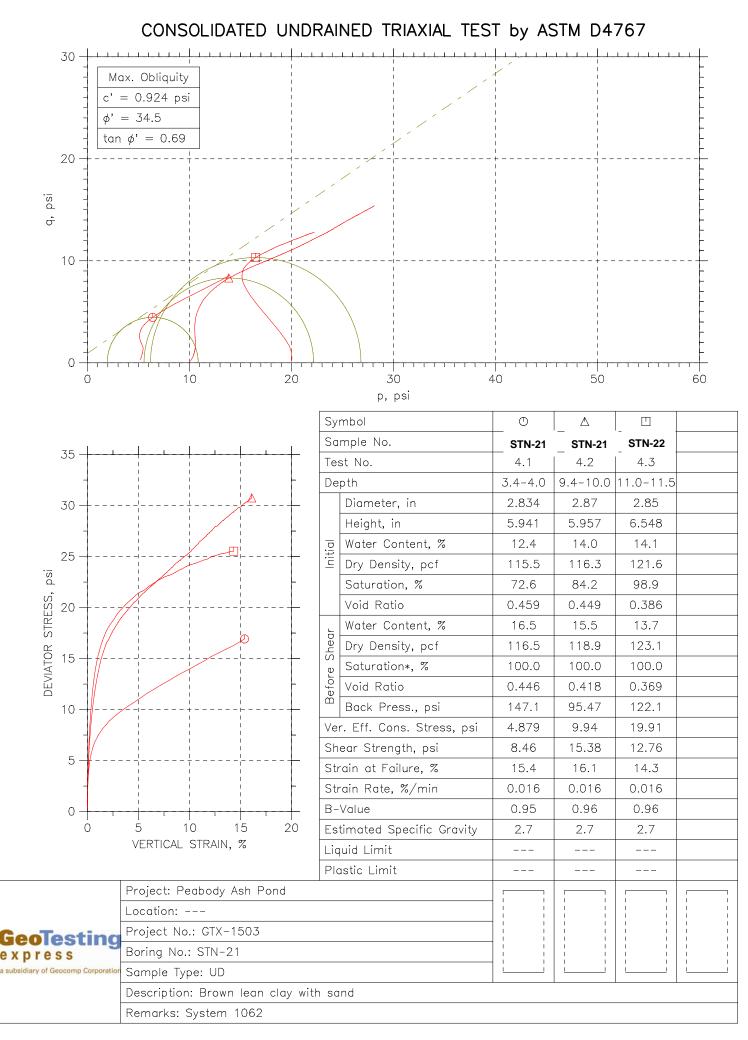

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0	st-7	3.1	9.7-10.4	JM	11/13/09	ММ		1503-3.1.dat
Δ	st-7	3.2	10.4-11.0	jm	11/13/09	mm		1503-3.2.dat
	st-7	3.3	11.0-11.5	jm	11/10/09	mm		1503-3.3.dat

Project: Peabody Ash Pond	Location:	Project No.: GTX-1503
Boring No.: STN-16	Sample Type: UD	

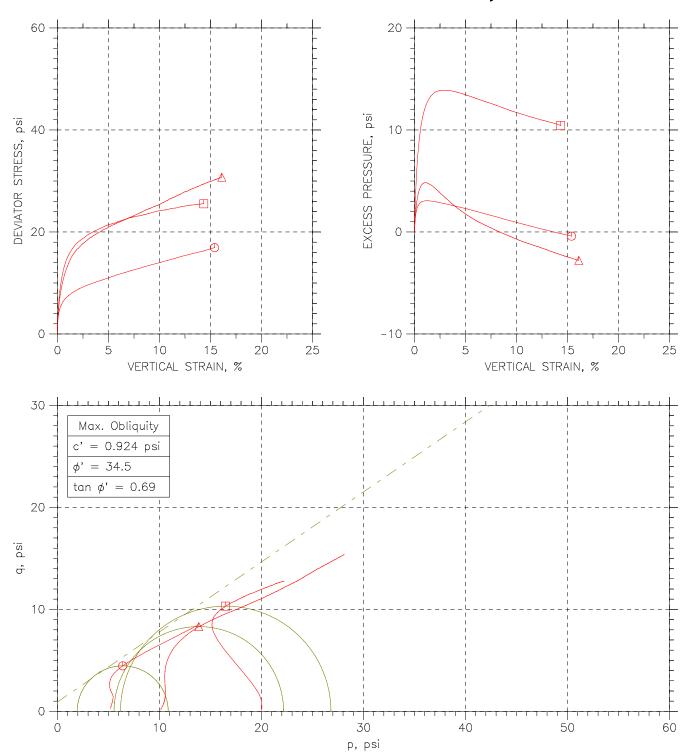
Description: Gray-Brown Sandy lean clay

Remarks: 2054

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0	st-7	3.1	9.7-10.4	JM	11/13/09	ММ		1503-3.1.dat
Δ	st-7	3.2	10.4-11.0	jm	11/13/09	mm		1503-3.2.dat
	st-7	3.3	11.0-11.5	jm	11/10/09	mm		1503-3.3.dat


VERTICAL STRAIN, %

GeoTesting	
express	
a subsidiary of Geocomp Corporation	١


Project: Peabody Ash Pond	Location:	Project No.: GTX-1503
Boring No.: STN-16	Sample Type: UD	

Description: Gray-Brown Sandy lean clay

Remarks: 2054

CONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D4767

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Ф		4.1	3.4-4.0	jm	11/10/09	mm		1503-4.1.dat
Δ		4.2	9.4-10.0	JM	11/10/09	ММ		1503-4.2.dat
	st-7	4.3	11.0-11.5	jm	11/9/09	mm		1503-4.3.dat

GeoTesti	na	F
express	9	E
a subsidiary of Geocomp Cor	poration	[

Project: Peabody Ash Pond	Location:	Project No.: GTX-1503
Boring No.: STN-21	Sample Type: UD	

Description: Brown lean clay with sand

Remarks: System 1062

CONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D4767

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Ф		4.1	3.4-4.0	jm	11/10/09	mm		1503-4.1.dat
Δ		4.2	9.4-10.0	JM	11/10/09	ММ		1503-4.2.dat
	st-7	4.3	11.0-11.5	jm	11/9/09	mm		1503-4.3.dat

VERTICAL STRAIN, %

GeoTesting	
express	
a subsidiary of Geocomp Corporation	

Project: Peabody Ash Pond	Location:	Project No.: GTX-1503
Boring No.: STN-21	Sample Type: UD	

Description: Brown lean clay with sand

Remarks: System 1062

HYDRAULIC CONDUCTIVITY

Project No. GTX-1503 Tested By JMProject Name $Peabody \ Ash \ Pond$ Test Date 11/4/09Boring No. STN-6 Reviewed By mmSample No. ST-3 Review Date 11/8/2009

Sample Depth 12.4-13' Lab No. 1

Sample Description Brown silty sandy clay

ASTM D5084 - Falling Head (Method C RisingTail)

Sample Type:	UD
Sample Orientation:	Vertical
Initial Water Content, %:	19.3
Wet Unit Weight, pcf:	126.6
Dry Unit Weight, pcf:	106.1
Compaction, %:	N/A
	1.1E-07

Remarks:			

PERMEABILITY TEST

(ASTM D5084 - 90) (Method C, Increasing Tailwater Level)

Project Number	r GTX-1503	Tested By	JM
Project Name	Peabody Ash Pond	Test Date	11//4/09
Boring No.	STN-6	Reviewed By	mm
Sample No.	ST-3	Review Date	11/08/09
Sample Depth	12.4-13'	Lab No.	1
Sample Descrip	otion Brown sil	lty sandy clay	

Sample Data

Length,	in	Diameter, in		Pan No.	A-17
Location 1	2.866	Location 1	2.870	Dry Soil+Pan, grams	512.22
Location 2	2.787	Location 2	2.870	Pan Weight, grams	6.64
Location3	2.765	Location 3	2.870		
Average	2.806	Average	2.870	Moisture Content, %	19.3
		Wet Soil + Tare, grams	603.33	Wet Unit Weight, pcf	126.6
		Tare Weight, grams	0.00	Dry Unit Weight, pcf	106.1

Chamber Pressure, psi	65
Back Pressure, psi	60
Confining Pressure asi	5

Remarks:

Date	Date	Time	Time	Time	H _a	H_1	H_b	H_2	k	Temp	k
Start	Finish	Start	Finish	(sec)	(cm)	(cm)	(cm)	(cm)	cm/sec	(°C)	cm/sec
											at 20 °C
				300	3.7	104.7	3.40	104.1	1.4E-07	22	1.3E-07
				700	3.7	104.7	3.00	103.4	1.2E-07	22	1.1E-07
				1050	3.7	104.7	2.70	102.8	1.2E-07	22	1.1E-07
				1400	3.7	104.7	2.40	102.2	1.2E-07	22	1.1E-07
				1600	3.7	104.7	2.30	102	1.1E-07	22	1.1E-07
				-							
					·						

No. of Trials	Sample	Max. Density Compaction		Sample
	Type	(pcf)	%	Orientation
5	UD	106.1	N/A	Vertical

Avg. k at 20 °C 1.1E-07 cm/sec

PERMEABILITY TEST

Sample Description

(ASTM D5084 - 90) (Method C, Increasing Tailwater Level)

Brown lean clay

Project Number GTX-1503

Project Name Peabody Ash Pond

Boring No. STN-7

Sample No. ST-2

Sample Depth 11.8-12.4

Tested By JM

Test Date 11/14/09

Reviewed By MM

Review Date 11/07/09

Lab No. 2

Sample Data

Length,	in	Diameter, in	Diameter, in Pan No.		B-44
Location 1	2.831	Location 1 2.873		Dry Soil+Pan, grams	499.22
Location 2	2.830	Location 2	2.873	Pan Weight, grams	7.88
Location3	2.829	Location 3	2.873		
Average	2.830	Average	2.873	Moisture Content, %	17.4
		Wet Soil + Tare, grams	577.00	Wet Unit Weight, pcf	119.8
		Tare Weight, grams		Dry Unit Weight, pcf	102.0

Chamber Pressure, psi	65
Back Pressure, psi	60
Confining Pressure asi	5

Remarks:

Date	Date	Time	Time	Time	H_a	H_1	H_b	H_2	k	Temp	k
Start	Finish	Start	Finish	(sec)	(cm)	(cm)	(cm)	(cm)	cm/sec	(°C)	cm/sec
											at 20 °C
				960	7.5	106.3	7.70	106.2	4.4E-08	22	4.2E-08
				4800	7.5	106.3	9.00	106	5.3E-08	24	4.8E-08
				8400	7.5	106.3	9.70	105.7	4.7E-08	24	4.3E-08
				16090	7.5	106.3	11.90	105.1	5.0E-08	24	4.5E-08
				28000	7.5	106.3	15.30	104.3	5.1E-08	24	4.7E-08

No. of Trials	Sample	Max. Density	Compaction	Sample	
	Type	(pcf)	%	Orientation	
5	UD	102.0	N/A	Vertical	

Avg. k at 20 °C 4.5E-08 cm/sec

HYDRAULIC CONDUCTIVITY

Project No. GTX-1503 Tested By JM

Project Name Peabody Ash Pond Test Date 11/14/2009

Boring No. STN-7 Reviewed By MM

Sample No. ST-2 Review Date 11/7/2009

Sample Depth 11.8-12.4 Lab No. 2

Sample Description Brown lean clay

ASTM D5084 - Falling Head (Method C RisingTail)

Sample Type:	UD
Sample Orientation:	Vertical
Initial Water Content, %:	17.4
Wet Unit Weight, pcf:	119.8
Dry Unit Weight, pcf:	102.0
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	4.5E-08

Remarks:			

PERMEABILITY TEST

(ASTM D5084 - 90) (Method C, Increasing Tailwater Level)

Project Numbe	r GTX-1503	Tested By JM		
Project Name	Peabody Ash Pond	Test Date	11/04/09	
Boring No.	STN-16	Reviewed By	MM	
Sample No.	ST-1	Review Date	11/08/09	
Sample Depth	4.5-5.1 ft	Lab No.	3	
Sample Descrip	otion	-		

Sample Data

Length,	in	Diameter, in	Diameter, in Pan No.		A-12
Location 1	2.708	Location 1 2.844		Dry Soil+Pan, grams	474.33
Location 2	2.710	Location 2	2.843	Pan Weight, grams	9.66
Location3	2.709	Location 3	2.845		
Average	2.709	Average	2.844	Moisture Content, %	18.8
	Wet Soil + Tare, grams		552.12	Wet Unit Weight, pcf	122.2
		Tare Weight, grams 0.0		Dry Unit Weight, pcf	102.9

Chamber Pressure, psi	65
Back Pressure, psi	60
Confining Pressure, psi	5

Remarks:

Date	Date	Time	Time	Time	H_a	H_1	H_b	H_2	k	Temp	k
Start	Finish	Start	Finish	(sec)	(cm)	(cm)	(cm)	(cm)	cm/sec	(°C)	cm/sec
											at 20 °C
				940	5.1	100.8	5.30	100.6	6.0E-08	22	5.7E-08
				1600	5.1	100.8	5.40	100.4	6.2E-08	22	5.9E-08
				2300	5.1	100.8	5.60	100.3	6.1E-08	22	5.9E-08
				5500	5.1	100.8	6.40	99.8	5.9E-08	22	5.7E-08
				8600	5.1	100.8	7.50	99.5	6.2E-08	22	5.9E-08

No. of Trials	Sample	Max. Density	Compaction	Sample
	Type	(pcf)	%	Orientation
5	UD	102.9	N/A	Vertical

Avg. k at 20 °C 5.8E-08 cm/sec

HYDRAULIC CONDUCTIVITY

Project No. GTX-1503 Tested By JM

Project Name Peabody Ash Pond Test Date 11/4/2009

Boring No. STN-16 Reviewed By MM

Sample No. ST-1 Review Date 11/8/2009

Sample Depth $4.5-5.1 \, ft$ Lab No. 3

Sample Description

ASTM D5084 - Falling Head (Method C RisingTail)

Sample Type:	UD
Sample Orientation:	Vertical
Initial Water Content, %:	18.8
Wet Unit Weight, pcf:	122.2
Dry Unit Weight, pcf:	102.9
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	5.8E-08

Remarks:			

PERMEABILITY TEST

(ASTM D5084 - 90) (Method C, Increasing Tailwater Level)

Project Numbe	r GTX-1503	Tested By	JM
Project Name	Peabody Ash Pond	Test Date	11/04/09
Boring No.	STN-16	Reviewed By	MM
Sample No.	ST-1	Review Date	11/09/09
Sample Depth	5.7-6.3 ft	Lab No.	4
Sample Descrip	otion	-	

Sample Data

Length,	in	Diameter, in		Pan No.	G-8
Location 1	3.006	Location 1 2.870		Dry Soil+Pan, grams	572.33
Location 2	2.981	Location 2	2.870	Pan Weight, grams	9.59
Location3	2.994	Location 3	2.870		
Average	2.994	Average	2.870	Moisture Content, %	17.5
		Wet Soil + Tare, grams	661.45	Wet Unit Weight, pcf	130.1
		Tare Weight, grams	0.00	Dry Unit Weight, pcf	110.7

Chamber Pressure, psi	65
Back Pressure, psi	60
Confining Pressure psi	5

Remarks:

Date	Date	Time	Time	Time	H_a	H_1	H_b	H_2	k	Temp	k
Start	Finish	Start	Finish	(sec)	(cm)	(cm)	(cm)	(cm)	cm/sec	(°C)	cm/sec
											at 20 °C
				60000	8.6	105.4	19.50	92.8	6.8E-08	22	6.5E-08
				84000	8.6	105.4	22.10	89.6	6.3E-08	22	6.0E-08
				96000	8.6	105.4	24.80	87.4	6.6E-08	22	6.3E-08
				150000	8.6	105.4	31.50	80.8	6.6E-08	22	6.3E-08
				220000	8.6	105.4	39.20	74.4	6.7E-08	22	6.4E-08
					·						

No. of Trials	Sample	Max. Density	Compaction	Sample
	Type	(pcf)	%	Orientation
5	tube	110.7	NA	Vertical

Avg. k at 20 °C 6.3E-08 cm/sec

a = area of burette in cm²L = length of sample in cm A = area of sample in cm²t = time in seconds

Ha = initial inlet head in cm H_1 = initial outlet head in cm H_b = final inlet head in cm H_2 = final outlet head in cm

 0.16 cm^2 41.74 cm² A =

7.60 cm L =

HYDRAULIC CONDUCTIVITY

Project No. GTX-1503 Tested By JMProject Name $Peabody \ Ash \ Pond$ Test Date 11/4/2009Boring No. STN-16 Reviewed By MM

Sample No. ST-1 Review Date 11/9/2009

Sample Depth 5.7-6.3 ft Lab No. 4

Sample Description

ASTM D5084 - Falling Head (Method C RisingTail)

Sample Type:	Tube
Sample Orientation:	Vertical
Initial Water Content, %:	17.5
Wet Unit Weight, pcf:	130.1
Dry Unit Weight, pcf:	110.7
Compaction, %:	NA
Hydraulic Conductivity, cm/sec. @20 °C	6.3E-08

Remarks:			

PERMEABILITY TEST

(ASTM D5084 - 90) (Method C, Increasing Tailwater Level)

Project Numbe	r GTX-1503	Tested By	JM
Project Name	Peabody Ash Pond	Test Date	11/08/09
Boring No.	STN-21	Reviewed By	MM
Sample No.	ST-1	Review Date	11/12/09
Sample Depth	2.2-2.8 ft	Lab No.	4
Sample Descrip	ption Brown sar	ndy silty clay	

Sample Data

Length,	in	Diameter, in		Pan No.	LP-2
Location 1	2.801	Location 1 2.840		Dry Soil+Pan, grams	546.22
Location 2	2.890	Location 2	2.840	Pan Weight, grams	9.82
Location3	2.850	Location 3	2.840		
Average	2.847	Average	2.840	Moisture Content, %	10.3
		Wet Soil + Tare, grams	591.88	Wet Unit Weight, pcf	125.0
		Tare Weight, grams	0.00	Dry Unit Weight, pcf	113.3

-	
Chamber Pressure, psi	65
Back Pressure, psi	60
Confining Pressure, psi	5

Remarks:

Date	Date	Time	Time	Time	H _a	H_1	H_b	H_2	k	Temp	k
Start	Finish	Start	Finish	(sec)	(cm)	(cm)	(cm)	(cm)	cm/sec	(°C)	cm/sec
											at 20 °C
				1800	7.7	94.5	8.90	94	1.6E-07	22	1.5E-07
				2200	7.7	94.5	9.40	94	1.7E-07	22	1.6E-07
				10600	7.7	94.5	14.40	89	2.0E-07	22	1.9E-07
				14000	7.7	94.5	15.80	88	1.9E-07	22	1.8E-07
				19000	7.7	94.5	16.30	86	1.6E-07	22	1.6E-07

No. of Trials	Sample	Max. Density	Compaction	Sample
	Type	(pcf)	%	Orientation
5	UD	111.8	N/A	Vertical

Avg. k at 20 °C 1.7E-07 cm/sec

HYDRAULIC CONDUCTIVITY

Project No. GTX-1503 Tested By JMProject Name $Peabody \ Ash \ Pond$ Test Date 11/08/09Boring No. STN-21 Reviewed By MM

Sample No. ST-1 Reviewed by III/II

Sample Depth $2.2-2.8\,ft$ Lab No. 5

Sample Description Brown sandy silty clay

ASTM D5084 - Falling Head (Method C RisingTail)

Sample Type:	UD
Sample Orientation:	Vertical
Initial Water Content, %:	10.3
,	
Wet Unit Weight, pcf:	125.0
Dry Unit Weight, pcf:	113.3
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	1.7E-07

Remarks:			

PERMEABILITY TEST

(ASTM D5084 - 90) (Method C, Increasing Tailwater Level)

Project Number	r GTX-1503	Tested By	JM
Project Name	Peabody Ash Pond	Test Date	11/08/09
Boring No.	STN-22	Reviewed By	MM
Sample No.	ST-1	Review Date	11/12/09
Sample Depth	5.5-6 ft	Lab No.	6
Sample Descrip	tion Brown sar	ndy silty clay	

Sample Data

Length,	in	Diameter, in		Pan No.	M-2
Location 1	2.750	Location 1	2.870	Dry Soil+Pan, grams	532.01
Location 2	2.770	Location 2	2.870	Pan Weight, grams	7.95
Location3	2.798	Location 3	2.870		
Average	2.773	Average	2.870	Moisture Content, %	14.9
		Wet Soil + Tare, grams	602.19	Wet Unit Weight, pcf	127.9
		Tare Weight, grams	0.00	Dry Unit Weight, pcf	111.3

	
Chamber Pressure, psi	65
Back Pressure, psi	60
, 1	
Confining Pressure, psi	5

Remarks:

Date	Date	Time	Time	Time	H_a	H_1	H_b	H_2	k	Temp	k
Start	Finish	Start	Finish	(sec)	(cm)	(cm)	(cm)	(cm)	cm/sec	(°C)	cm/sec
											at 20 °C
				660	9.7	102.3	9.90	102.1	8.9E-08	22	8.5E-08
				1500	9.7	102.3	10.20	101.9	8.8E-08	22	8.4E-08
				1800	9.7	102.3	10.30	101.8	9.0E-08	22	8.6E-08
				3900	9.7	102.3	10.90	101.2	8.7E-08	22	8.3E-08
				6200	9.7	102.3	11.50	100.5	8.6E-08	22	8.2E-08

No. of Trials	Sample	Max. Density	Compaction	Sample
	Type	(pcf)	%	Orientation
5	UD	111.3	N/A	Vertical

Avg. k at 20 °C 8.4E-08 cm/sec

HYDRAULIC CONDUCTIVITY

Project No. GTX-1503 Tested By JM Project Name $Peabody \ Ash \ Pond$ Test Date 11/8/2009

Boring No. STN-22 Reviewed By MM

Sample No. ST-1 Review Date 11/12/2009

Sample Depth 5.5-6 ft Lab No. 6

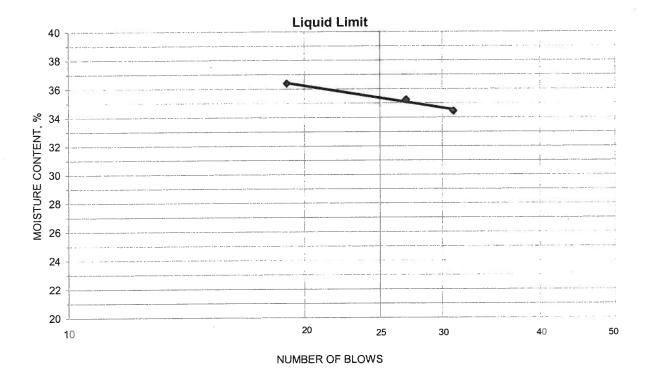
Sample Description Brown sandy silty clay

ASTM D5084 - Falling Head (Method C RisingTail)

Sample Type:	UD
Sample Orientation:	Vertical
Initial Water Content, %:	14.9
Wet Unit Weight, pcf:	127.9
Dry Unit Weight, pcf:	111.3
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	8.4E-08

Remarks:			

	TVA - PAF Peak		Project Number Lab ID	
urce S	STN-15, 8.0'-9.5	5', 9.5'-11.0'	Lab ID	3/0
unty "	Muhlenberg, Ky		Date Received	11-11-09
	SPT Comp		Date Reported	11-20-09
			Test Results	
	al Moisture Co	<u>ntent</u>	Atterberg Limits	_
Test Not Perf			Test Method: ASTM D 4318 Method A	4
Moistur	re Content (%):	N/A	Prepared: Dry	
			Liquid Limit:	
			Plastic Limit:	19
	ticle Size Anal		Plasticity Index:	16
	Method: ASTM [Activity Index:	0.89
	ethod: ASTM D			
Hydrometer N	Method: ASTM เ	D 422		
		1 1	Moisture-Density Relation	<u>snip</u>
	cle Size	%	Test Not Performed	
Sieve Size	(mm)	Passing	Maximum Dry Density (lb/ft ³):	
3"	75		Maximum Dry Density (kg/m³):	· · · · · · · · · · · · · · · · · · ·
2"	50		Optimum Moisture Content (%):	
1 1/2"	37.5		Over Size Correction %:	N/A
1"	25	100.0		
3/4"	19	87.9		
3/8"	9.5	81.0	California Bearing Ratio	<u>o</u>
No. 4	4.75	77.3	Test Not Performed	
No. 10	2	70.4	Bearing Ratio (%):	
No. 40	0.425	64.2	Compacted Dry Density (lb/ft ³):	N/A
No. 200	0.075	58.9	Compacted Moisture Content (%):	N/A
	0.02	47.3		
	0.005	30.8		
	0.002	18.4	Specific Gravity	
estimated	0.001	10.0	Test Method: ASTM D 854	
			Prepared: Dry	N. 40
Plus 3 in. ma	iterial, not includ	led: 0 (%)	Particle Size:	
		1 4 60 17 6	Specific Gravity at 20° Celsius:	2.73
_	ASTM	AASHTO	L	
Range	(%)	(%)	01161	
Gravel	22.7	29.6	Classification	CL
Coarse San		6.2	Unified Group Symbol:	
Medium Sar			Group Name: Gravelly lean of	ciay with sand
Fine Sand		5.3		
Silt	28.1	40.5	AAGUTTO OI 15 15	0.07
Clay	30.8	18.4	AASHTO Classification:	A-6 (/)


Reviewed by:

Project No. 175569069 Project TVA - PAF Peabody Ash Pond 378 Lab ID STN-15, 8.0'-9.5', 9.5'-11.0' Source % + No. 40 36 Test Method ASTM D 4318 Method A Date Received 11-11-2009 Tested By mc Prepared Dry Test Date 11-19-2009

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit
19.04	17.17	11.74	31	34.4	
19.05	16.88	10.72	27	35.2	
19.56	17.25	10.90	19	36.4	35

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Water Content (%)	Plastic Limit	Plasticity Index
18.37	17.23	11.13	18.7	19	16
18.15	16.99	10.91	19.1		

Remarks:			
	Reviewed By	RI	
	-		

TVA - PAF Peabody Ash Pond STN-15, 8.0'-9.5', 9.5'-11.0' Project Number <u>175569069</u> Lab ID <u>378</u>

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method: ASTM D 422
Prepared using: ASTM D 421

Particle Shape: Angular
Particle Hardness: Hard and Durable

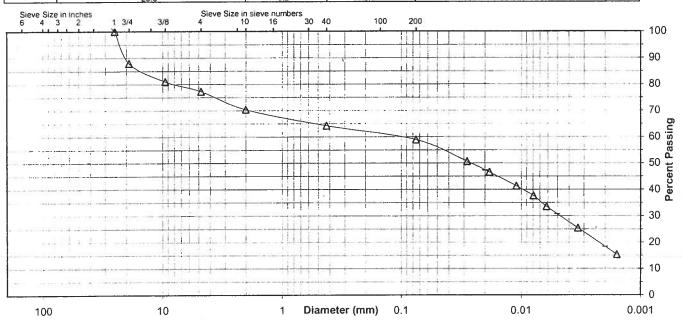
Tested By: CM
Test Date: 11-13-2009
Date Received 11-11-2009

Maximum Particle size: 1" Sieve

	%
Sieve Size	Passing
3"	
2"	
1 1/2"	
1"	100.0
3/4"	87.9
3/8"	81.0
No. 4	77.3
No. 10	70.4

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on: Total Sample


Specific Gravity 2.73

Dispersed using: Apparatus A - Mechanical, for 1 minute

No. 40	64.2
No. 200	58.9
0.02 mm	47.3
0.005 mm	30.8
0.002 mm	18.4
0.001 mm	10.0

Particle Size Distribution

40711	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Sitt	Clav
ASTM	12.1	10.6	6.9	6.2	5.3	28.1	30.8
		Gravel		Coarse Sand	Fine Sand	Sill	Clav
AASHTO		29.6		6.2	5.3	40.5	18.4

Comments

Reviewed By_

Project Name T	VΔ - PΔF Peal	oody Ash Pond	Project Number	175569069
	TN-6, 1.5'-3.0'		Lab ID	366
	luhlenberg, Ky	<u></u>	Date Received	11-11-09
Sample Type S	SPT Comp		Date Reported	11-20-09
			Test Results	
Natura	al Moisture Co	ntent	Atterberg Limits	·-·-
Test Not Perfo	ormed		Test Method: ASTM D 4318 Method	A
Moisture	e Content (%):	N/A	Prepared: Dry	
			Liquid Limit:	
			Plastic Limit:	
	icle Size Anal		Plasticity Index:	
•	lethod: ASTM [Activity Index:	0.95
	thod: ASTM D			
Hydrometer M	lethod: ASTM เ	D 422		
		, , , , , , , , , , , , , , , , , , , 	Moisture-Density Relation	ship
Particle Size %		4 1 1	Test Not Performed	
Sieve Size	(mm)	Passing	Maximum Dry Density (lb/ft³):	N/A
3"	75		Maximum Dry Density (kg/m³):	N/A
2"	50		Optimum Moisture Content (%):	N/A
1 1/2"	37.5		Over Size Correction %:	N/A
1"	25			
3/4"	19	100.0		
3/8"	9.5	90.3	California Bearing Rati	0
No. 4	4.75	82.6	Test Not Performed	
No. 10	2	72.5	Bearing Ratio (%):	N/A
No. 40	0.425	65.5	Compacted Dry Density (lb/ft ³):	N/A
No. 200	0.075	58.6	Compacted Moisture Content (%):	N/A
	0.02	47.0		
	0.005	31.0		
	0.002	19.7	Specific Gravity	
estimated	0.001	11.0	Test Method: ASTM D 854	
			Prepared: Dry	

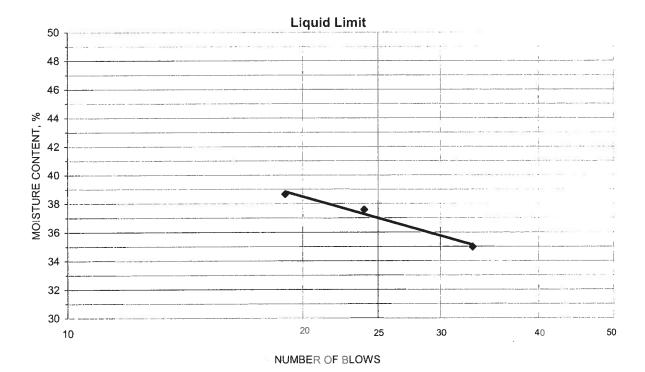
Plus 3 in. material,	not included: 0	(%)
----------------------	-----------------	-----

	ASTM	AASHTO
Range	(%)	(%)
Gravel	17.4	27.5
Coarse Sand	10.1	7.0
Medium Sand	7.0	
Fine Sand	6.9	6.9
Silt	27.6	38.9
Clay	31.0	19.7
		<u> </u>

	Classification	
l	Jnified Group Symbol: _	ÇL
Group Name:	Sandy lean	clay with gravel
Α.	ASHTO Classification: _	A-6 (8)

Particle Size:

Specific Gravity at 20° Celsius:


Comments:		
	Reviewe	ed by:

Project No. 175569069 Project TVA - PAF Peabody Ash Pond Lab ID Source STN-6, 1.5'-3.0', 3.0'-4.5' 366 % + No. 40 34 Test Method ASTM D 4318 Method A Date Received 11-11-2009 Tested By mc 11-19-2009 Prepared Dry Test Date

	Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit
	18.83	16.83	11.11	33	35.0	
	18.79	16.63	10.88	24	37.6	
Γ	19.86	17.46	11.25	19	38.6	37
Γ						

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Water Content (%)	Plastic Limit	Plasticity Index
18.39	17.26	11.13	18.4	18	19
18.49	17.35	11.08	18.2		

Remarks:			
	Reviewed By	KI	\
	_		,

File: frm_175569069_sum_366.xls Sheet: Limit-Report Preparation Date: 1998
Revision Date: 1-2008

TVA - PAF Peabody Ash Pond STN-6, 1.5'-3.0', 3.0'-4.5' Project Number 175569069 Lab ID 366

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method: ASTM D 422
Prepared using: ASTM D 421

Particle Shape: Angular
Particle Hardness: Hard and Durable

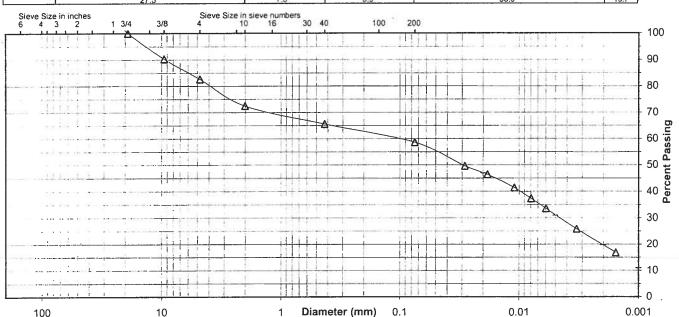
Tested By: CM
Test Date: 11-13-2009
Date Received 11-11-2009

Maximum Particle size: 3/4" Sieve

Sieve Size	% Passing
3"	
2"	
1 1/2"	
1"	Y.
3/4"	100.0
3/8"	90.3
No. 4	82.6
No. 10	72.5

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on: Total Sample


Specific Gravity 2.73

Dispersed using: Apparatus A - Mechanical, for 1 minute

No. 40	65.5
No. 200	58.6
0.02 mm	47.0
0.005 mm	31.0
0.002 mm	19.7
0.001 mm	11.0

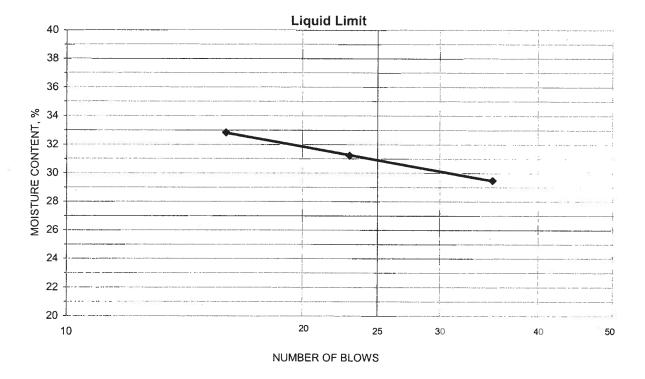
Particle Size Distribution

ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clav
	0.0	17.4	10.1	7.0	6.9	27.6	31.0
AASHTO	Gravei		Coarse Sand	Fine Sand	Silt	Clav	
MASHIU		27.5		7.0	6.9	38.9	19.7

Comments

Reviewed By

oject Name	TVA - PAF Pea	body Ash Pond	Project Number 1755690)69
urce	STN-21, 17.5'-1	9.0', 20.0'-21.5'	Lab ID	387
untv	Muhlaphara Ku		Date Received 11-11	ΛΩ
	Muhlenberg, Ky		Date Reported 11-20	00
mpie Type	SPT Comp		Date Reported11-20-	-03
			Test Results	
	ural Moisture Co	ontent	Atterberg Limits	
Test Not Pe			Test Method: ASTM D 4318 Method A	
Moist	ure Content (%):	N/A	Prepared: Dry	
			Liquid Limit: 31	
	747		Plastic Limit: 16	
Pa	article Size Anal	<u>ysis</u>	Plasticity Index: 15	
Preparation Method: ASTM D 421		D 421	Activity Index: 0.94	
Gradation N	Method: ASTM D	422		
Hydrometer	Method: ASTM	D 422		
			Moisture-Density Relationship	
Par	ticle Size	%	Test Not Performed	
Sieve Siz	ze (mm)	Passing	Maximum Dry Density (lb/ft ³): N/A	
3"	75		Maximum Dry Density (kg/m³): N/A	
2"	50		Optimum Moisture Content (%): N/A	
1 1/2"	37.5		Over Size Correction %: N/A	
1"	25			
3/4"	19	100.0		
3/8"	9.5	88.8	California Bearing Ratio	
No. 4	4.75	82.4	Test Not Performed	
No. 10	2	69.3	Bearing Ratio (%): N/A	
No. 40	0.425	61.8	Compacted Dry Density (lb/ft ³): N/A	
No. 200	0.075	49.0	Compacted Moisture Content (%): N/A	
	0.02	37.9		
	0.005	26.1		
	0.002	15.8	Specific Gravity	
estimated	0.001	9.0	Test Method: ASTM D 854	
		,	Prepared: Dry	
Plus 3 in. m	naterial, not includ	ded: 0 (%)	Particle Size: No. 10	
			Specific Gravity at 20° Celsius: 2.71	
	ASTM	AASHTO		
Range	(%)	(%)		
Gravel		30.7	Classification	
Coarse Sa	and 13.1	7.5	Unified Group Symbol: SC	
Medium Sa	and 7.5		Group Name: Clayey sand with gra	ıvel
Fine San	nd 12.8	12.8		
Tille Sail	22.9	33.2		
Silt	22.5	<u> </u>	AASHTO Classification: A-6 (


Reviewed by:

Project	TVA - PAF Peabod	y Ash Pond		Project No.	175569069
Source	STN-21, 17.5'-19.0'	, 20.0'-21.5'		Lab ID	387
				% + No. 40	38
Tested By	mc	Test Method AS	TM D 4318 Method A	Date Received	11-11-2009
Test Date	11-19-2009	Prepared	Drv		

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit
20.03	17.99	11.07	35	29.5	
19.40	17.43	11.12	23	31.2	
18.86	16.90	10.93	16	32.8	31
					_

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Water Content (%)	Plastic Limit	Plasticity Index
18.39	17.39	11.21	16.2	16	15
18.37	17.35	11.16	16.5		

Remarks:				
	Reviewed By	RI	100	

TVA - PAF Peabody Ash Pond Project Number 175569069 STN-21, 17.5'-19.0', 20.0'-21.5' Lab ID

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method:

ASTM D 422

Prepared using:

ASTM D 421

Particle Shape:

Angular

Particle Hardness: Hard and Durable

Tested By: CM
Test Date: 11-12-2009

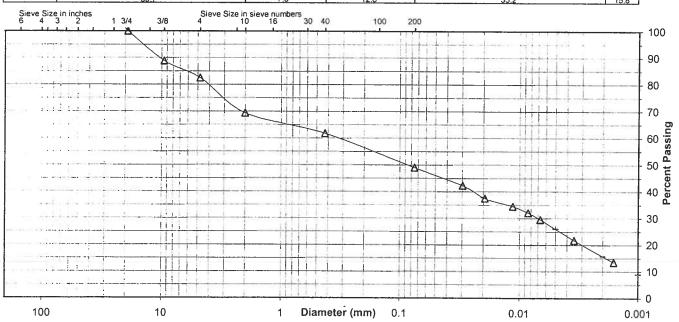
Date Received 11-11-2009

Maximum Particle size: 3/4" Sieve

ian the No.	10 Sieve
	%
Sieve Size	Passing
3"	
2"	
1 1/2"	
1"	
3/4"	100.0
3/8"	88.8
No. 4	82.4
No. 10	69.3

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on: Total Sample


Specific Gravity 2.71

Dispersed using: Apparatus A - Mechanical, for 1 minute

61.8
49.0
37.9
26.1
15.8
9.0

Particle Size Distribution

ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clay
7.07111	0.0	17.6	13.1	7.5	12.8	22.9	26.1
AASHTO		Gravel		Coarse Sand	Fine Sand	Silt	Clay
1 10101110	1	30.7		7.5	12.8	33.2	15.8

Comments

Reviewed By

Laboratory Document Prepared By: MW Approved BY: TLK

Project Name	TVA - PAF Peabody Ash Pond	Project Number	175569069
Source	STN-3, 17.5'-19.0', 20.0'-21.5'	Lab ID	360
County	Muhlenberg, Ky	Date Received	11-11-09
Sample Type	SPT Comp	Date Reported	11-20-09

Test Results

Natural Moisture Content Test Not Performed Moisture Content (%): N/A Noisture Content (%): N/A Prepared: Dry Liquid Limit: 37 Plastic Limit: 16 Particle Size Analysis Preparation Method: ASTM D 421 Patterberg Limits Test Method: ASTM D 4318 Method A Prepared: Dry Liquid Limit: 37 Plastic Limit: 16 Plasticity Index: 21 Activity Index: 0.70

Gradation Method: ASTM D 421 Gradation Method: ASTM D 422 Hydrometer Method: ASTM D 422					
	Particle	Size	%		Test No
	Sieve Size	(mm)	Passing		Max

Particle	Size	%
Sieve Size	(mm)	Passing
3"	75	
2"	50	
1 1/2"	37.5	
1"	25	
3/4"	19	100.0
3/8"	9.5	98.4
No. 4	4.75	97.9
No. 10	2	90.3
No. 40	0.425	85.7
No. 200	0.075	75.3
8	0.02	59.7
	0.005	39.0
	0.002	30.1
estimated	0.001	25.0

Plus 3 in. material, not included: 0 (%)

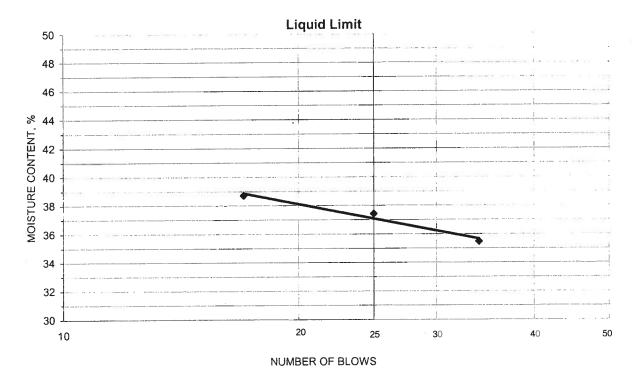
	ASTM	AASHTO
Range	(%)	(%)
Gravel	2.1	9.7
Coarse Sand	7.6	4.6
Medium Sand	4.6	
Fine Sand	10.4	10.4
Silt	36.3	45.2
Clay	39.0	30.1

Moisture-Density Relation	ship
Test Not Performed	
Maximum Dry Density (lb/ft ³):	N/A
Maximum Dry Density (kg/m³):	N/A
Optimum Moisture Content (%):	N/A
Over Size Correction %:	N/A

California Bearing Rat	tio
Test Not Performed	
Bearing Ratio (%):	N/A
Compacted Dry Density (lb/ft ³):	N/A
Compacted Moisture Content (%):	N/A

Specific Gravity	<u></u>
Test Method: ASTM D 854	
Prepared: Dry	
Particle Size:	No. 10
Specific Gravity at 20° Celsius:	2.68
,	

Classifica	<u>tion</u>
Unified Group Syr	nbol: CL
Group Name:	Lean clay with sand
AASHTO Classifica	ation: A-6 (14)


Comments:				
_		 		
-			Reviewed by: _	K1
			_	

Project	TVA - PAF Peabod	y Ash Pond	Project No.	175569069
Source	STN-3, 17.5'-19.0',		Lab ID	360
			% + No. 40	14
Tested By	/ MC	Test Method ASTM D 4318 Method A	Date Received	11-11-2009
Test Date	11-19-2009	Prepared Dry		

Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit
17.20	11.42	34	35.5	
17.57	11.69	25	37.4	
17.27	11.56	17	38.7	37
	Tare Mass (g) 17.20 17.57	Tare Mass (g) (g) (17.20 11.42 17.57 11.69	Tare Mass Tare Mass Number of Blows 17.20 11.42 34 17.57 11.69 25	Tare Mass (g) Tare Mass (g) Number of Blows Water Content (%) 17.20 11.42 34 35.5 17.57 11.69 25 37.4

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Water Content (%)	Plastic Limit	Plasticity Index
19.41	18.35	11.70	15.9	16	21
19.10	18.02	11.39	16.3		

Remarks:			
	Reviewed By	RI	

TVA - PAF Peabody Ash Pond STN-3, 17.5'-19.0', 20.0'-21.5'

Project Number 175569069 Lab ID

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method: Prepared using: _

ASTM D 422 ASTM D 421

Particle Shape:

Angular

Particle Hardness:

Hard and Durable

Tested By:

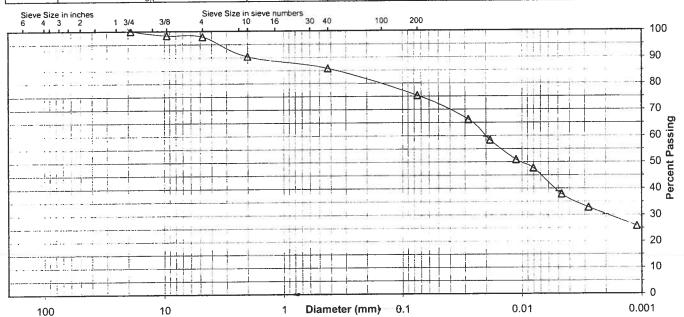
Test Date: 11-12-2009 Date Received 11-11-2009

Maximum Particle size: 3/4" Sieve

1411 tile 140. 10 01640		
	%	
Sieve Size	Passing	
3"		
2"		
1 1/2"		
1"		
3/4"	100.0	
3/8"	98.4	
No. 4	97.9	
No. 10	90.3	

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on: Total Sample


Specific Gravity 2.68

Dispersed using: Apparatus A - Mechanical, for 1 minute

No. 40	85.7
No. 200	75.3
0.02 mm	59.7
0.005 mm	39.0
0.002 mm	30.1
0.001 mm	25.0

Particle Size Distribution

1 di tiole dize bieti batiei:							
	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clav
ASTM	0.0	2.1	7.6	4.6	10.4	36.3	39.0
		Gravel		Coarse Sand	Fine Sand	Silt	Clav
AASHTO		9.7		4.6	10.4	45,2	30.1

Comments

Reviewed By

Laboratory Document Prepared By: MW Approved BY: TLK

NI

Project Name	TVA - PAF Peabody Ash Pond	Project Number	175569069
Source	STN-6, 13.5'-15.0', 15.0'-16.5'	Lab ID	369
County	Muhlenberg, Ky	Date Received	11-11-09
Sample Type	SPT Comp	Date Reported	11-20-09

Test Results

Natural Moisture Content Test Not Performed

Moisture Content (%):

N/A

Particle Size Analysis

Preparation Method: ASTM D 421 Gradation Method: ASTM D 422 Hydrometer Method: ASTM D 422

Particle	%	
Sieve Size	(mm)	Passing
3"	75	
2"	50	
1 1/2"	37.5	
1"	25	
3/4"	19	
3/8"	9.5	100.0
No. 4	4.75	99.2
No. 10	2	98.8
No. 40	0.425	88.0
No. 200	0.075	40.8
	0.02	30.6
	0.005	17.7
	0.002	13.1
estimated	0.001	10.0

Plus 3 in. material, not included: 0 (%)

	ASTM	AASHTO
Range	(%)	(%)
Gravel	0.8	1.2
Coarse Sand	0.4	10.8
Medium Sand	10.8	
Fine Sand	47.2	47.2
Silt	23.1	27.7
Clay	17.7	13.1

Atterberg Limits	
Test Method: ASTM D 4318 Method	Α
Prepared: Dry	
Liquid Limit:	22
Plastic Limit:	14
Plasticity Index:	8
Activity Index:	0.62

Moisture-Density Relation	<u>ship</u>
Test Not Performed	
Maximum Dry Density (lb/ft ³):	N/A
Maximum Dry Density (kg/m³):	N/A
Optimum Moisture Content (%):	N/A
Over Size Correction %:	N/A

<u>)</u>
N/A
N/A
N/A

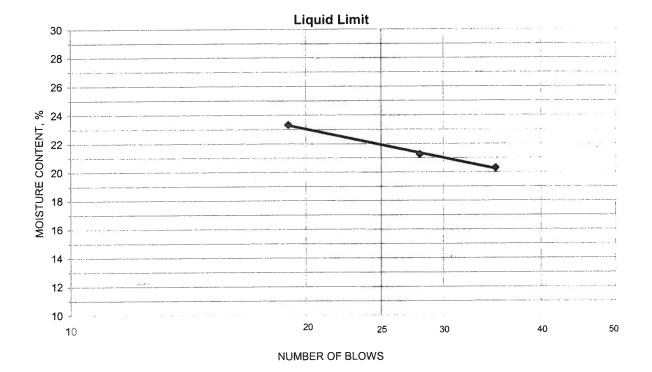
Specific Gravity					
Test Method: ASTM D 854					
Prepared: Dry					
Particle Size:	No. 10				
Specific Gravity at 20° Celsius:	2.67				

	Classification	
	Unified Group Symbol:	SC
Group Name:		Clayey sand
,	AASHTO Classification: _	A-4 (0)

Comments:	
	Reviewed by:

Project Source TVA - PAF Peabody Ash Pond STN-6, 13.5'-15.0', 15.0'-16.5' Project No. 175569069

Lab ID 369


% + No. 40 12

Date Received 11-11-2009

Tested By _____ Test Date ___

mc	Test Method	ASTM D 4318 Method A
11-19-2009	Prepared	Dry

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit
20.68	19.08	11.20	35	20.3	
21.36	19.56	11.09	28	21.3	
20.43	18.65	11.02	19	23.3	22
	3				

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Water Content (%)	Plastic Limit	Plasticity Index
19.29	18.34	11.62	14.1	14	8
19.31	18.33	11.68	14.7		

Remarks:		
	Reviewed By 21	

TVA - PAF Peabody Ash Pond STN-6, 13.5'-15.0', 15.0'-16.5' Project Number <u>175569069</u> Lab ID <u>369</u>

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method: ASTM D 422
Prepared using: ASTM D 421

Particle Shape: Angular
Particle Hardness: Hard and Durable

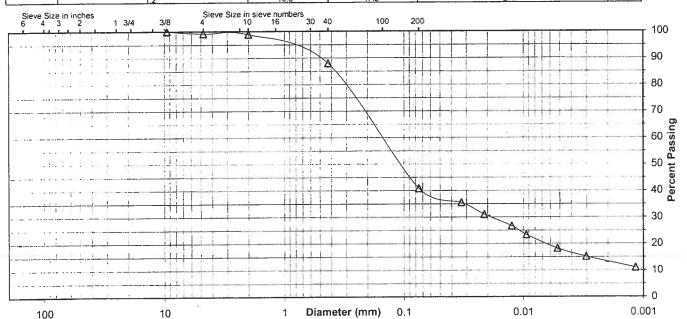
Tested By: CM
Test Date: 11-12-2009
Date Received 11-11-2009

Maximum Particle size: 3/8" Sieve

	%
Sieve Size	Passing
3"	
2"	
1 1/2"	
1"	
3/4"	
3/8"	100.0
No. 4	99.2
No. 10	98.8

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on: Total Sample


Specific Gravity 2.67

Dispersed using: Apparatus A - Mechanical, for 1 minute

No. 40	88.0
No. 200	40.8
0.02 mm	30.6
0.005 mm	17.7
0.002 mm	13.1
0.001 mm	10.0

Particle Size Distribution

					I di tiolo oiz	, Diotiination		
		Coarse Gravel	Fine Gravei	C. Sand	Medium Sand	Fine Sand	Silt	Clav
3	ASTM	0.0	0.8	0.4	10.8	47,2	23.1	17.7
			Gravel		Coarse Sand	Fine Sand	Silt	Clav
	AASHTO		4.2		10.8	47.2	27.7	13.1

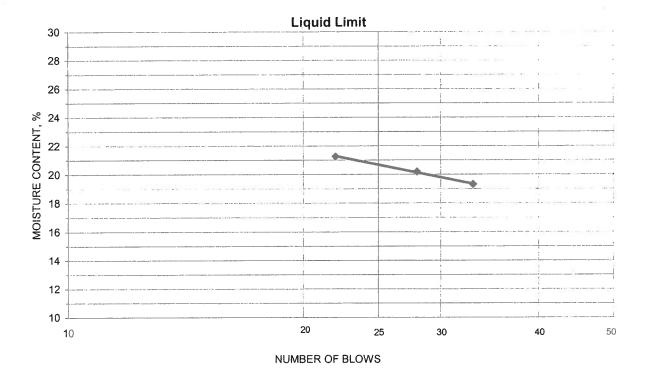
Comments

Reviewed By

Laboratory Document Prepared By: MW Approved BY: TLK

ject Name	TVA - PAF Pea	body Ash Pond	Project Number	175569069
		1.5', 32.5'-34.0'	Project NumberLab ID	375
unty T	Muhlenberg, Ky		Date Received	11-11-09
_	SPT Comp		Date Reported	
1-1			Test Results	
Natur	al Moisture Co	ontent	Atterberg Limits	
Test Not Perf	ormed		Test Method: ASTM D 4318 Method	Α
Moistur	e Content (%):	N/A	Prepared: Dry	
			Liquid Limit:	
			Plastic Limit:	
<u>Par</u>	ticle Size Anal	<u>ysis</u>	Plasticity Index:	9
Preparation Method: ASTM D 421			Activity Index:	0.64
Gradation Me	ethod: ASTM D	422		
Hydrometer N	Method: ASTM	D 422		
			Moisture-Density Relation	<u>iship</u>
Partio	cle Size	%	Test Not Performed	
Sieve Size	(mm)	Passing	Maximum Dry Density (lb/ft ³):	N/A
3"	75		Maximum Dry Density (kg/m³):	N/A
2"	50		Optimum Moisture Content (%):	N/A
1 1/2"	37.5		Over Size Correction %:	N/A
1"	25			
3/4"	19			
3/8"	9.5	-	California Bearing Rat	io
No. 4	4.75	100.0	Test Not Performed	_
No. 10	2	100.0	Bearing Ratio (%):	N/A
No. 40	0.425	89.3	Compacted Dry Density (lb/ft ³):	N/A
No. 200	0.075	45.4	Compacted Moisture Content (%):	
	0.02	34.9	'	
	0.005	20.7		
	0.002	14.5	Specific Gravity	
estimated	0.001	10.0	Test Method: ASTM D 854	
			Prepared: Dry	
Plus 3 in. ma	terial, not includ	ded: 0 (%)	Particle Size:	
			Specific Gravity at 20° Celsius:	2.63
	ASTM	AASHTO		
Range	(%)	(%)		
Gravel	0.0	0.0	Classification	
Coarse San		10.7	Unified Group Symbol:	
Medium San		"-	Group Name:	Clayey sand
Fine Sand		43.9		
I Cilt	24.7	30.9 14.5	AASHTO Classification:	
Silt Clay	- 20.7			

File: frm_175569069_sum_375.xls Sheet: Summary Preparation Date: 1998 Revision Date: 1-2008 Laboratory Document Prepared By: MW Approved BY: TLK


Reviewed by:

Project No. 175569069 Project TVA - PAF Peabody Ash Pond Lab ID 375 STN-11, 30.0'-31.5', 32.5'-34.0' Source % + No. 40 11 Test Method ASTM D 4318 Method A Date Received 11-11-2009 Tested By mc Prepared ¹ Dry Test Date 11-19-2009

Wet Soil and Tare Mass · (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit
18.83	17.57	11.04	33	19.3	
19.33	17.95	11.11	28	20.2	
21.06	19.30	11.02	22	21.3	21

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Water Content (%)	Plastic Limit	Plasticity Index
18.62 18.72	17.82 17.91	10.99	11.7	12	9

Remarks:		
	Reviewed By R	1

TVA - PAF Peabody Ash Pond STN-11, 30.0'-31.5', 32.5'-34.0' Project Number 175569069 Lab ID

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method: ASTM D 422 ASTM D 421 Prepared using:

Particle Shape: Angular Hard and Durable Particle Hardness:

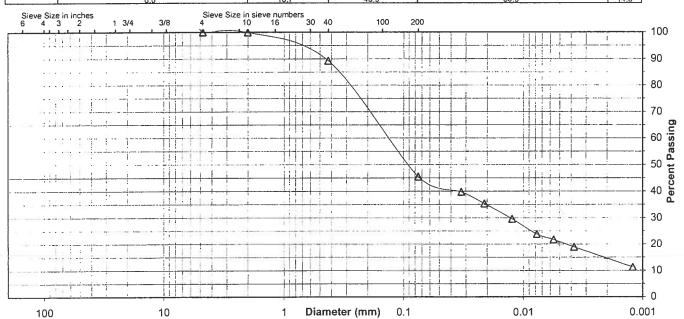
Tested By: CM Test Date: 11-12-2009 Date Received 11-11-2009

Maximum Particle size: No. 4 Sieve

=	%
Sieve Size	Passing
3"	
2"	
1 1/2"	
1"	
3/4"	
3/8"	
No. 4	100.0
No. 10	100.0

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on: Total Sample


Specific Gravity 2.63

Dispersed using: Apparatus A - Mechanical, for 1 minute

No. 40	89.3
No. 200	45.4
0.02 mm	34.9
0.005 mm	20.7
0.002 mm	14.5
0.001 mm	10.0

Particle Size Distribution

l'ultible dize biogibation							
ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clav
ASIM	0.0	0.0	0.0	10.7	43.9	24.7	20.7
AASHTO		Gravel		Coarse Sand	Fine Sand	Silt	Clav
AMSHIO		0.0		10.7	l ⊿3.a l	30.9	145

Comments

Reviewed By

Project Name	TVA - PAF Peabody Ash Pond	Project Number	175569069
Source	STN-17, 17.5'-19.0', 20.0'-21.5'	Lab ID	384
County	Muhlenberg, Ky	Date Received	11-11-09
Sample Type	SPT Comp	Date Reported	11-20-09

Test Results

Natural Moisture Content Test Not Performed Moisture Content (%): N/A

Particle Size Analysis
Preparation Method: ASTM D 42
Gradation Method: ASTM D 422

Gı Hydrometer Method: ASTM D 422

Particle	%	
Sieve Size	(mm)	Passing
3"	75	
2"	50	
1 1/2"	37.5	
1"	25	
3/4"	19	
3/8"	9.5	
No. 4	4.75	
No. 10	2	100.0
No. 40	0.425	98.7
No. 200	0.075	89.6
	0.02	64.8
	0.005	28.1
	0.002	19.2
estimated	0.001	14.0

Plus 3 in. material, not included: 0 (%)

ASTM	AASHTO
(%)	(%)
0.0	0.0
0.0	1.3
1.3	
9.1	9.1
61.5	70.4
28.1	19.2
	0.0 0.0 1.3 9.1 61.5

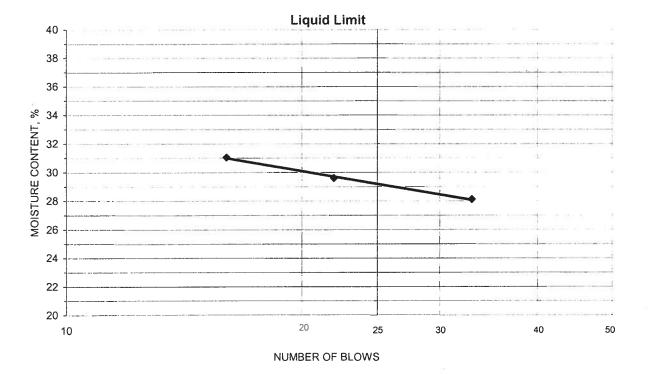
Atterberg Limits				
Test Method: ASTM D 4318 Method A				
29				
20	_			
9	_			
0.47	_			
	29 20 9			

Moisture-Density Relationship			
Test Not Performed			
Maximum Dry Density (lb/ft ³):	N/A		
Maximum Dry Density (kg/m³):	N/A		
Optimum Moisture Content (%):	N/A		
Over Size Correction %:	N/A		
	0		

V/A
V/A
V/A

Specific Gravity	
Test Method: ASTM D 854	
Prepared: Dry	
Particle Size:	No. 10
Specific Gravity at 20° Celsius:	2.68

Classification	
Unified Group Symbol:	CL
Group Name:	Lean clay
AASHTO Classification:	A-4 (7)


Comments:		F	
**		0.	
	Reviewed by:	KI	

Project No. 175569069 Project TVA - PAF Peabody Ash Pond Lab ID Source STN-17, 17.5'-19.0', 20.0'-21.5' 384 % + No. 40 1 Test Method ASTM D 4318 Method A Date Received 11-11-2009 Tested By MC 11-19-2009 Prepared Test Date Dry

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit
19.83	17.93	11.17	33	28.1	
19.18	17.31	10.99	22	29.6	
18.75	16.90	10.94	16	31.0	29
				8	

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and Tare Mass	Dry Soil and Tare Mass	Tare Mass	Water Content		*
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
18.67	17.44	11.19	19.7	20	9
18.22	17.03	10.88	19.3		

Remarks:	:	
		Reviewed By R

TVA - PAF Peabody Ash Pond STN-17, 17.5'-19.0', 20.0'-21.5' Project Number <u>175569069</u> Lab ID <u>384</u>

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method: ASTM D 422
Prepared using: ASTM D 421

Particle Shape: N/A
Particle Hardness: N/A

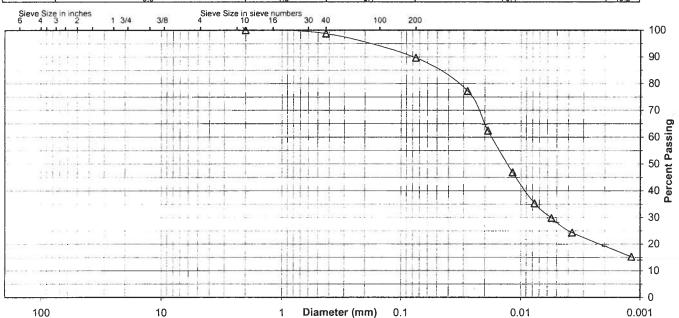
Tested By: CM
Test Date: 11-12-2009
Date Received 11-11-2009

Maximum Particle size: No. 10 Sieve

Sieve Size	% Passing
3"	
2"	
1 1/2"	
1"	
3/4"	
3/8"	
No. 4	
No. 10	100.0

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on: Total Sample


Specific Gravity 2.68

Dispersed using: Apparatus A - Mechanical, for 1 minute

No. 40	98.7
No. 200	89.6
0.02 mm	64.8
0.005 mm	28.1
0.002 mm	19.2
0.001 mm	14.0

Particle Size Distribution

ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clav	
A311W	0.0	0.0	0.0	1.3	9,1	61,5	28.1	
AASHTO		Gravel		Coarse Sand	Fine Sand	Silt		Clav
AASHIO		0.0		1.3	9.1	70.4		19.2

Comments

Reviewed By

Summary of Soil Tests

Project Name	TVA - PAF Peabody Ash Pond	Project Number	175569069
Source	STN-7, 8.0'-9.5', 11.5'-13.0'	Lab ID	372
County	Muhlenberg, Ky	Date Received	11-11-09
Sample Type	SPT Comp	Date Reported	11-20-09

Test Results

Natural Moisture Content

Test Not Performed

Moisture Content (%): N/A

Particle Size Analysis

Preparation Method: ASTM D 421 Gradation Method: ASTM D 422 Hydrometer Method: ASTM D 422

Particle	Size	%	
Sieve Size	(mm)	Passing	
3"	75		
2"	50		
1 1/2"	37.5		
1"	25	100.0	
3/4"	19	96.0	
3/8"	9.5	96.0	
No. 4	4.75	96.0	
No. 10	2	95.3	
No. 40	0.425	90.2	
No. 200	0.075	78.2	
	0.02	62.1	
	0.005	39.2	
	0.002	29.3	
estimated	0.001	22.0	

Plus 3 in. material, not included: 0 (%)

	ASTM	AASHTO
Range	(%)	(%)
Gravel	4.0	4.7
Coarse Sand	0.7	5.1
Medium Sand	5.1	
Fine Sand	12.0	12.0
Silt	39.0	48.9
Clay	39.2	29.3

Atterberg Limits	
Test Method: ASTM D 4318 Metho	d A
Prepared: Dry	
Liquid Limit:	37
Plastic Limit:	19
Plasticity Index:	18
Activity Index:	0.62
-	

Moisture-Density Relation	ship
Test Not Performed	
Maximum Dry Density (lb/ft ³):	N/A
Maximum Dry Density (kg/m³):	N/A
Optimum Moisture Content (%):	N/A
Over Size Correction %:	N/A

N/A
N/A
N/A

Specific Grav	ity
Test Method: ASTM D 854	
Prepared: Dry	
Particle Siz	e: No. 10
Specific Gravity at 20° Celsiu	s: 2.73

	<u>Classification</u>	
	Unified Group Symbol:	CL
Group Name	: Lear	n clay with sand
	AASHTO Classification: _	A-6 (13)

Comments:		
- Carlo Carl	Reviewed by: Reviewed by:	

File: frm_175569069_sum_372.xls Sheet: Summary Preparation Date. 1998 Revision Date: 1-2008

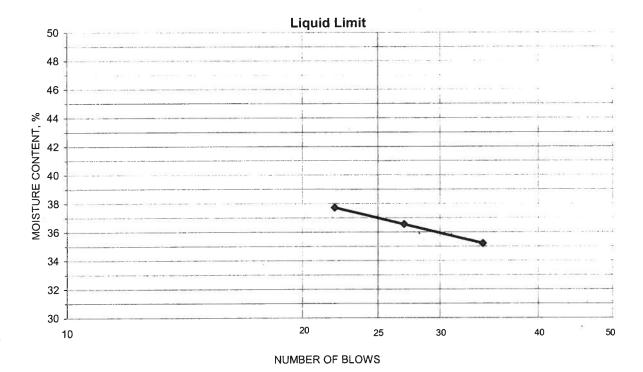
11-11-2009

Project Source

TVA - PAF Peabody Ash Pond

STN-7, 8.0'-9.5', 11.5'-13.0'

Project No. 175569069 Lab ID 372 % + No. 40 10


Date Received

Tested By Test Date

mc 11-19-2009 Test Method ASTM D 4318 Method A Prepared .

Dry

40.05			Blows	(%)	Liquid Limit
18.85	16.83	11.09	34	35.2	
19.36	17.12	10.99	27	36.5	
19.10	16.89	11.03	22	37.7	37

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Water Content (%)	Plastic Limit	Plasticity Index
18.58	17.39	11.19	19.2	19	18
18.47	17.30	11.12	18.9		

Remarks:	Q.			
		Reviewed By	RY	

Project Name Source

TVA - PAF Peabody Ash Pond STN-7, 8.0'-9.5', 11.5'-13.0'

Project Number 175569069 Lab ID

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method: Prepared using:

ASTM D 422 ASTM D 421

Particle Shape:

Angular

Particle Hardness:

Hard and Durable

Tested By:

Test Date: 11-12-2009

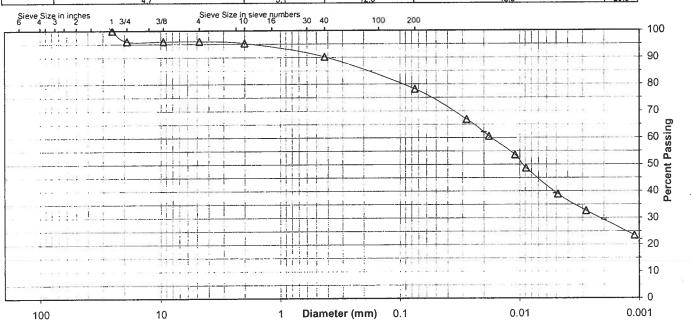
Date Received 11-11-2009

Maximum Particle size: 1" Sieve

ian the No. 10 Oleve				
	%			
Sieve Size	Passing			
3"				
2"				
1 1/2"				
1"	100.0			
3/4"	96.0			
3/8"	96.0			
No. 4	96.0			
No. 10	95.3			

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on: Total Sample


Specific Gravity 2.73

Dispersed using: Apparatus A - Mechanical, for 1 minute

No. 40	90.2
No. 200	78.2
0.02 mm	62.1
0.005 mm	39.2
0.002 mm	29.3
0.001 mm	22.0

Particle Size Distribution

Faiticle Size Distribution							
ACTNA	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clav
ASTM	4.0	0.0	0.7	5,1	12.0	39.0	39.2
AAGUTO		Gravel		Coarse Sand	Fine Sand.	Silt	Clav
AASHTO		4.7		5.1	120	48.9	29.3

Comments

Reviewed By

Summary of Soil Tests

Project Name Source	TVA - PAF Peabody Ash Pond STN-4, 37.5'-39.0', 40.0'-41.5'		Project Number Lab ID	175569069 363
Oddroc	0114 4, 07.0 00.0 , 40.0 41.0			
County	Muhlenberg, Ky		Date Received	11-11-09
Sample Type	SPT Comp		Date Reported	11-20-09
		Test Results		
	ural Moisture Content	Took Mathed: A	Atterberg Limits	
Test Not Pe	ture Content (%): N/A	Prepared: Dry	STM D 4318 Method A	•
			Liquid Limit:	46
			Plastic Limit:	22
P	article Size Analysis		Plasticity Index:	24
Preparation	Method: ASTM D 421		Activity Index:	0.51
Gradation I	Method: ASTM D 422			·
Hydromete	r Method: ASTM D 422			

Particle	Size	%
Sieve Size	(mm)	Passing
3"	75	
2"	50	
1 1/2"	37.5	
1"	25	
3/4"	19	
3/8"	9.5	
No. 4	4.75	
No. 10	2	100.0
No. 40	0.425	99.9
No. 200	0.075	99.6
	0.02	94.2
	0.005	66.7
	0.002	47.1
estimated	0.001	35.0

Plus 3	in. m	aterial,	, not	includ	led:	0	(%)
--------	-------	----------	-------	--------	------	---	-----

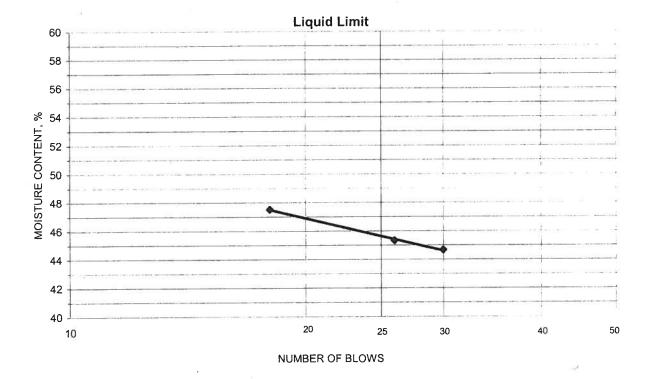
ASTM	AASHTO
(%)	(%)
0.0	0.0
0.0	0.1
0.1	
0.3	0.3
32.9	52.5
66.7	47.1
	(%) 0.0 0.0 0.1 0.3 32.9

Moisture-Density Relationship		
Test Not Performed		
Maximum Dry Density (lb/ft ³): _	N/A	
Maximum Dry Density (kg/m³):	N/A	
Optimum Moisture Content (%):	N/A	
Over Size Correction %:	N/A	

California Bearing Ra	<u>tio</u>
Test Not Performed	
Bearing Ratio (%): _	N/A
Compacted Dry Density (lb/ft ³):	N/A
Compacted Moisture Content (%):	N/A

Specific Gravity	
Test Method: ASTM D 854	
Prepared: Dry	
Particle Size:	No. 10
Specific Gravity at 20° Celsius:	2.76

<u>Classification</u> Unified Group Symbol:	CL
Group Name:	Lean clay
AASHTO Classification:	A-7-6 (27)


Comments:		
	Reviewed by:	21

Project No. 175569069 Project TVA - PAF Peabody Ash Pond Lab ID 363 Source STN-4, 37.5'-39.0', 40.0'-41.5' % + No. 40 0 Date Received 11-11-2009 Test Method ASTM D 4318 Method A Tested By 11-19-2009 Prepared Dry Test Date

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit
18.33	16.20	11.50	26	45.3	
19.69	17.14	11.43	30	44.7	
18.86	16.48	11.47	18	47.5	46
	1				

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Water Content (%)	Plastic Limit	Plasticity Index
18.77	17.48	11.62	22.0	22	24
18.49	17.21	11.38	22.0		

Remarks:	·		
		Reviewed By RJ	

Project	Name
Source	

 TVA - PAF Peabody Ash Pond
 Project Number
 175569069

 STN-4, 37.5'-39.0', 40.0'-41.5'
 Lab ID
 363

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method: ASTM D 422
Prepared using: ASTM D 421

Particle Shape: N/A
Particle Hardness: N/A

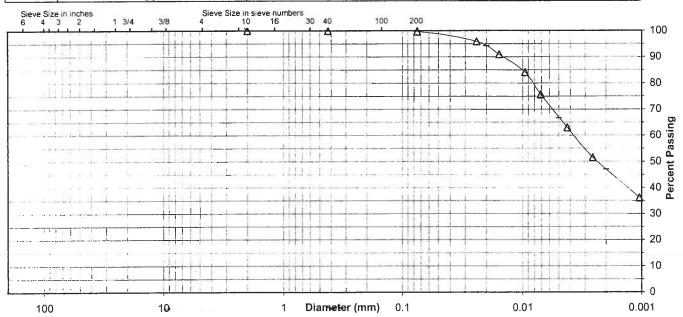
Tested By: CM
Test Date: 11-12-2009
Date Received 11-11-2009

Maximum Particle size: No. 10 Sieve

	%
Sieve Size	Passing
3"	
2"	
1 1/2"	
1"	
3/4"	
3/8"	
No. 4	
No. 10	100.0

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on: Total Sample


Specific Gravity 2.76

Dispersed using: Apparatus A - Mechanical, for 1 minute

No. 40	99.9
No. 200	99.6
0.02 mm	94.2
0.005 mm	66.7
0.002 mm	47.1
0.001 mm	35.0

Particle Size Distribution

ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clay
ASIM	0.0	0.0	0.0	0.1	0.3	32.9	66.7
AACUTO		Gravel		Coarse Sand	Fine Sand	Silt	Clav
AASHTO		0.0		0.1	0.3	52.5	47.1

Comments

Reviewed By

Laboratory Document Prepared By: MW Approved BY: TLK

Summary of Soil Tests

Project Name	TVA - PAF Peabody Ash Pond	Project Number	175569069
Source	STN-16, 15.5'-17.0', 18.0'-19.5'	Lab ID	381
County	Muhlenberg, Ky	Date Received	11-11-09
Sample Type	SPT Comp	Date Reported	11-20-09

Test Results

Natural Moisture Content Test Not Performed Moisture Content (%): N/A

Particle Size Analysis Preparation Method: ASTM D 421

Gradation Method: ASTM D 422 Hydrometer Method: ASTM D 422

Particle	Size	%
Sieve Size	(mm)	Passing
3"	75	
2"	50	
1 1/2"	37.5	
1"	25	
3/4"	19	
3/8"	9.5	
No. 4	4.75	
No. 10	2	100.0
No. 40	0.425	99.9
No. 200	0.075	92.1
	0.02	47.7
	0.005	17.7
	0.002	11.5
estimated	0.001	8.0

Plus 3 in. material, not included: 0 (%)

ASTM	AASHTO
(%)	(%)
0.0	0.0
0.0	0.1
0.1	
7.8	7.8
74.4	80.6
17.7	11.5
	(%) 0.0 0.0 0.1 7.8 74.4

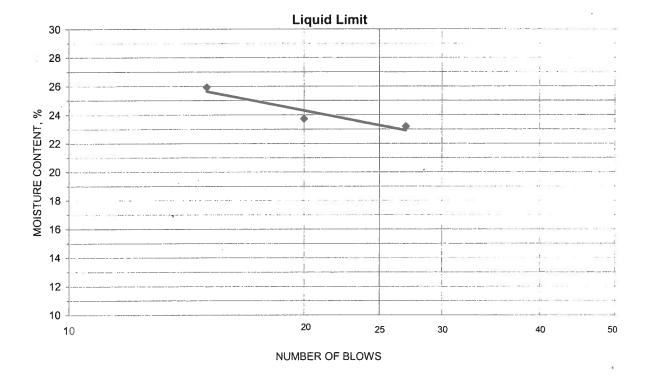
,

Moisture-Density Relati	<u>onship</u>
Test Not Performed	
Maximum Dry Density (lb/ft ³):	N/A
Maximum Dry Density (kg/m ³):	N/A
Optimum Moisture Content (%):	N/A
Over Size Correction %:	N/A

California Bearing Ratio					
N/A					
N/A					
N/A					

Specific Gravity	
Test Method: ASTM D 854	
Prepared: Dry	
Particle Size:	No. 10
Specific Gravity at 20° Celsius:	2.67

	Classification	
	Unified Group Symbol:	CL-ML
Group Name	:	Silty clay
	AASHTO Classification:	A-4 (3)


Comments:		
-		
-	Reviewed by:	RI
		\supset

Project TVA - PAF Peabody Ash Pond Project No. 175569069 Lab ID 381 Source STN-16, 15.5'-17.0', 18.0'-19.5' % + No. 40 0 Tested By Test Method ASTM D 4318 Method A Date Received 11-11-2009 Test Date 11-19-2009 Prepared Dry

Wet Soil and Tare Mass (g)-	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit
16.98	15.85	11.49	15	25.9	
18.94	17.50	11.43	20	23.7	
20.23	18.57	11.41	27	23.2	23
			-		
		2			

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and Tare Mass	Dry Soil and Tare Mass	Tare Mass	Water Content		a
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
19.26	18.15	11.77	17.4	17	6
18.75	17.67	11.45	17.4		

Remarks:			
	Reviewed By	RI	
	_		

Project Name Source

TVA - PAF Peabody Ash Pond STN-16, 15.5'-17.0', 18.0'-19.5' Project Number 175569069

Lab ID 381

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method: ASTM D 422
Prepared using: ASTM D 421

Particle Shape: N/A
Particle Hardness: N/A

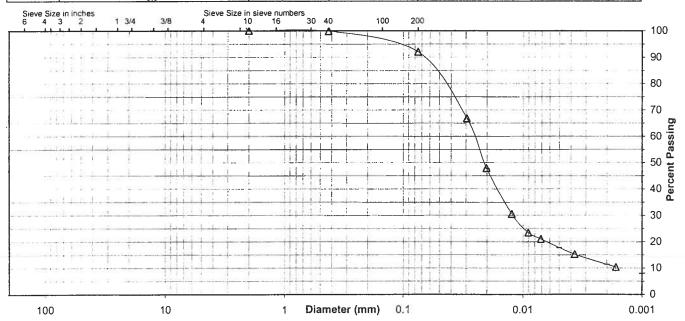
Tested By: CM
Test Date: 11-12-2009
Date Received 11-11-2009

Maximum Particle size: No. 10 Sieve

Sieve Size	% Passing
8	
HI.	
3"	
2"	
1 1/2"	
1"	
3/4"	
3/8"	
No. 4	
No. 10	100.0

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on: Total Sample


Specific Gravity 2.67

Dispersed using: Apparatus A - Mechanical, for 1 minute

No. 40	99.9
No. 200	92.1
0.02 mm	47.7
0.005 mm	17.7
0.002 mm	11.5
0.001 mm	8.0

Particle Size Distribution

ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clav
ASTM	0.0	0.0	0.0	0.1	7.8	74.4	17.7
AASHTO		Gravel		Coarse Sand	Fine Sand	Silt	Clav
AASHIO		0.0		0.1	7.8	80.6	11.5

Comments

Reviewed By

UNCONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D2850 10 psi Ġ 5 10 15 25 35 20 30 p, psi Symbol Sample No. STN-22, ST-1 35 -Test No. 7.1 Depth 6.0 - 6.5Tested by jm 30 11/19/09 Test Date Checked by mm 25 Check Date ps. 2.854 Diameter, in DEVIATOR STRESS, 5.797 Height, in 20 Water Content, % 13.6 Dry Density, pcf 119.3 15 Saturation, % 89.0 Void Ratio 0.413 Confining Stress, psi 5 10 Undrained Strength, psi 14.86 Max. Dev. Stress, psi 29.71 5 Strain at Failure, % 15.7 Strain Rate, %/min 1 Estimated Specific Gravity 2.7 0 20 10 Liquid Limit VERTICAL STRAIN, % Plastic Limit Plasticity Index Project: Peabody Ash Pond Location: ---Project No.: GTX-1503 **GeoTesting** Boring No.: STN-6 express the groundwork for success Sample Type: UD Description: Gray-Brown Lean clay with sand Remarks: 2054

UNCONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D2850 psi 2 0 12 10 16 p, psi Symbol STN-16, ST-1 Sample No. Test No. 6.1 5.1-5.7 Depth Tested by jm 6 11/19/09 Test Date Checked by mm 5 Check Date psi. 2.841 Diameter, in DEVIATOR STRESS, 6.334 Height, in Water Content, % 25.0 Dry Density, pcf 101. 3 Saturation, % 100.8 Void Ratio 0.669 5 Confining Stress, psi 2 Undrained Strength, psi 3.341 Max. Dev. Stress, psi 6.681 1 Strain at Failure, % 1.54 Strain Rate, %/min 1 Estimated Specific Gravity 2.7 0 10 20 Liquid Limit VERTICAL STRAIN, % Plastic Limit Plasticity Index Project: Peabody Ash Pond Location: ---Project No.: GTX-1503 GeoTesting Boring No.: STN-16 express the groundwork for success Sample Type: UD Description: Gray-Brown Lean clay with sand Remarks: 2054

UNCONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D2850 10 psi Ġ 5 15 20 25 30 40 35 p, psi Symbol Sample No. STN-6, ST-2 35 -Test No. 5.1 11.8-12.4 Depth Tested by jm 30 11/19/09 Test Date Checked by mm 25 Check Date psi. 2.775 Diameter, in DEVIATOR STRESS, 5.914 Height, in 20 Water Content, % 19.3 Dry Density, pcf 115. 15 Saturation, % 111.9 Void Ratio 0.465 Confining Stress, psi 10 10 Undrained Strength, psi 7.031 Max. Dev. Stress, psi 14.06 5 Strain at Failure, % 17.4 Strain Rate, %/min 1 Estimated Specific Gravity 2.7 0 20 10 15 Liquid Limit VERTICAL STRAIN, % Plastic Limit Plasticity Index Project: Peabody Ash Pond Location: ---Project No.: GTX-1503 GeoTesting Boring No.: STN-6 express the groundwork for success Sample Type: UD Description: Gray-Brown Lean clay with sand Remarks: 2054

Appendix H

Results of Engineering Analysis

SEEP/W Analysis Section A-A' Peabody Ash Pond

Paradise Fossil Plant Tennessee Valley Authority

December 2009

Method: Steady-State Seepage

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

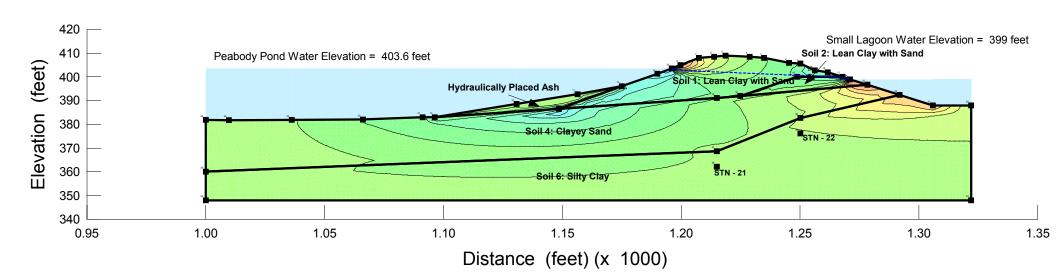
Piping Potential

Maximum occurs at (1271.1,399)

Total Head = 399.0 ft

At (1270.48,395.99)

Total Head = 399.39 ft


dH = 0.39 ft dl = 3.01 ft

i = 0.13 i(criticial) = 1.23

FSpiping = 9.5

Material Type	Ksat (ft/s)	Kratio	Wsat (ft3/ft3)
Soil 1: Lean Clay with Sand	3.3e-008	0.1	0.29
Soil 2: Lean Clay with Sand	3.3e-008	0.1	0.29
Soil 4: Clayey Sand	7.2e-008	0.05	0.32
Soil 6: Silty Clay	9.5e-008	0.02	0.38
Hydraulically Placed Ash	5e-005	0.02	0.46

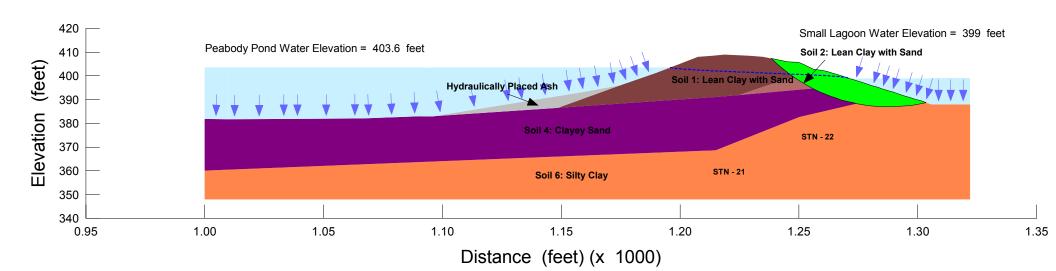
Existing Condition

Slope Stability Section A-A' Peabody Ash Pond

Paradise Fossil Plant Tennessee Valley Authority

December 2009 Method: Modified Spencer

Note:


The results of analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

Center: (1288, 457.5) ft

Radius: 70.5 ft

	Moist	Saturated		
Material Type	Unit Weight	Unit Weight	Cohesion	Friction Angle
Soil 1: Lean Clay with Sand	138	139	0	32
Soil 2: Lean Clay with Sand	138	139	0	32
Soil 4: Clayey Sand	129	133	0	30
Soil 6: Silty Clay	126	129	0	30
Hydraulically Placed Ash	100	107	0	25

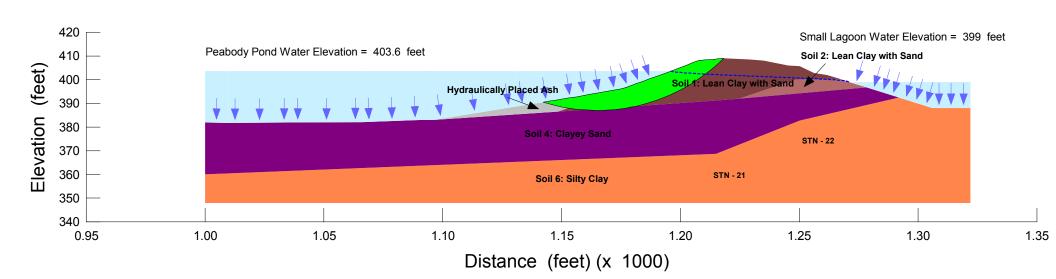
Existing Condition

Slope Stability Section A-A' Peabody Ash Pond

Ash Pond Center: (1165, 462.5) ft
Radius: 75.5 ft

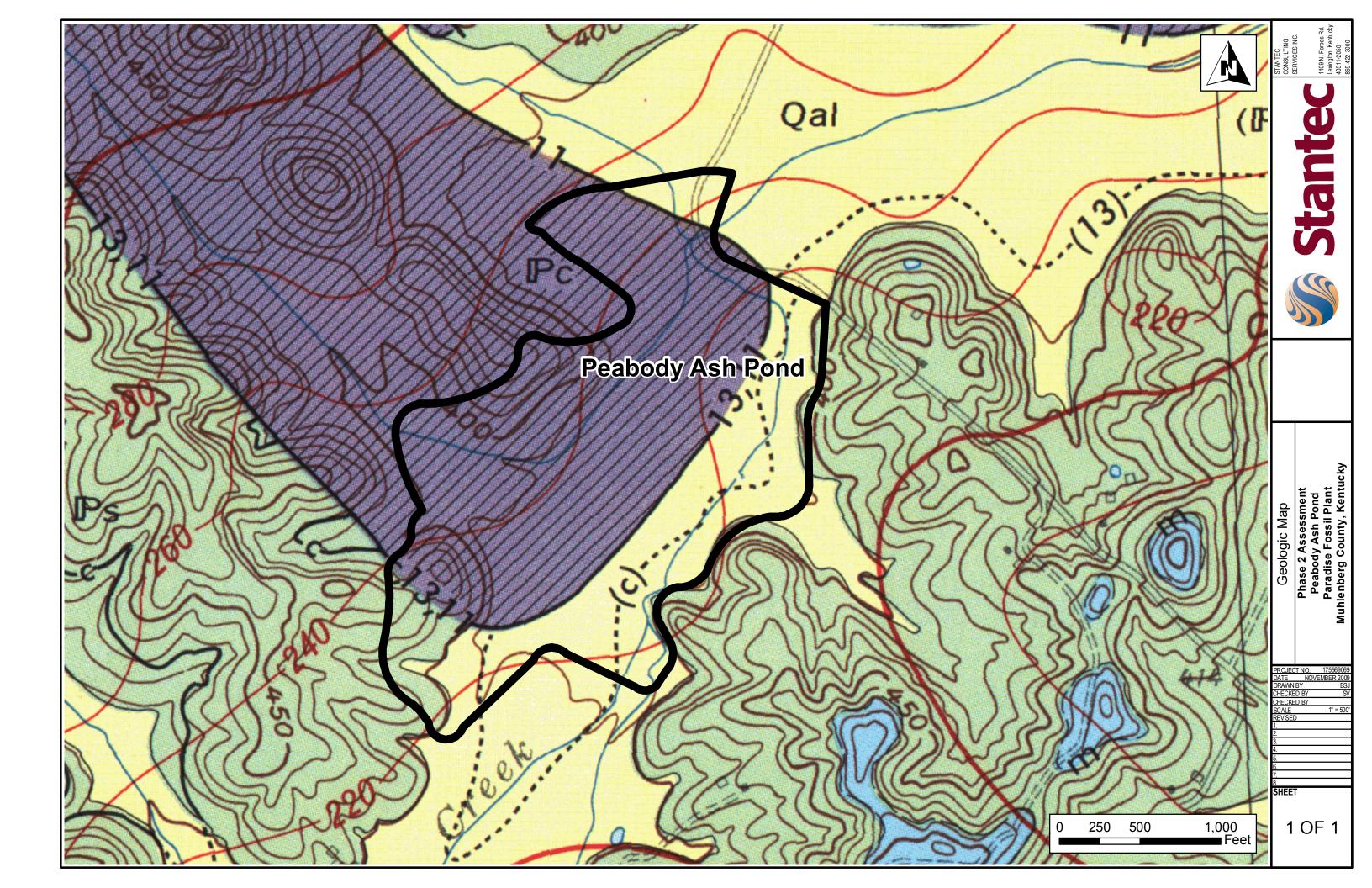
Paradise Fossil Plant Tennessee Valley Authority

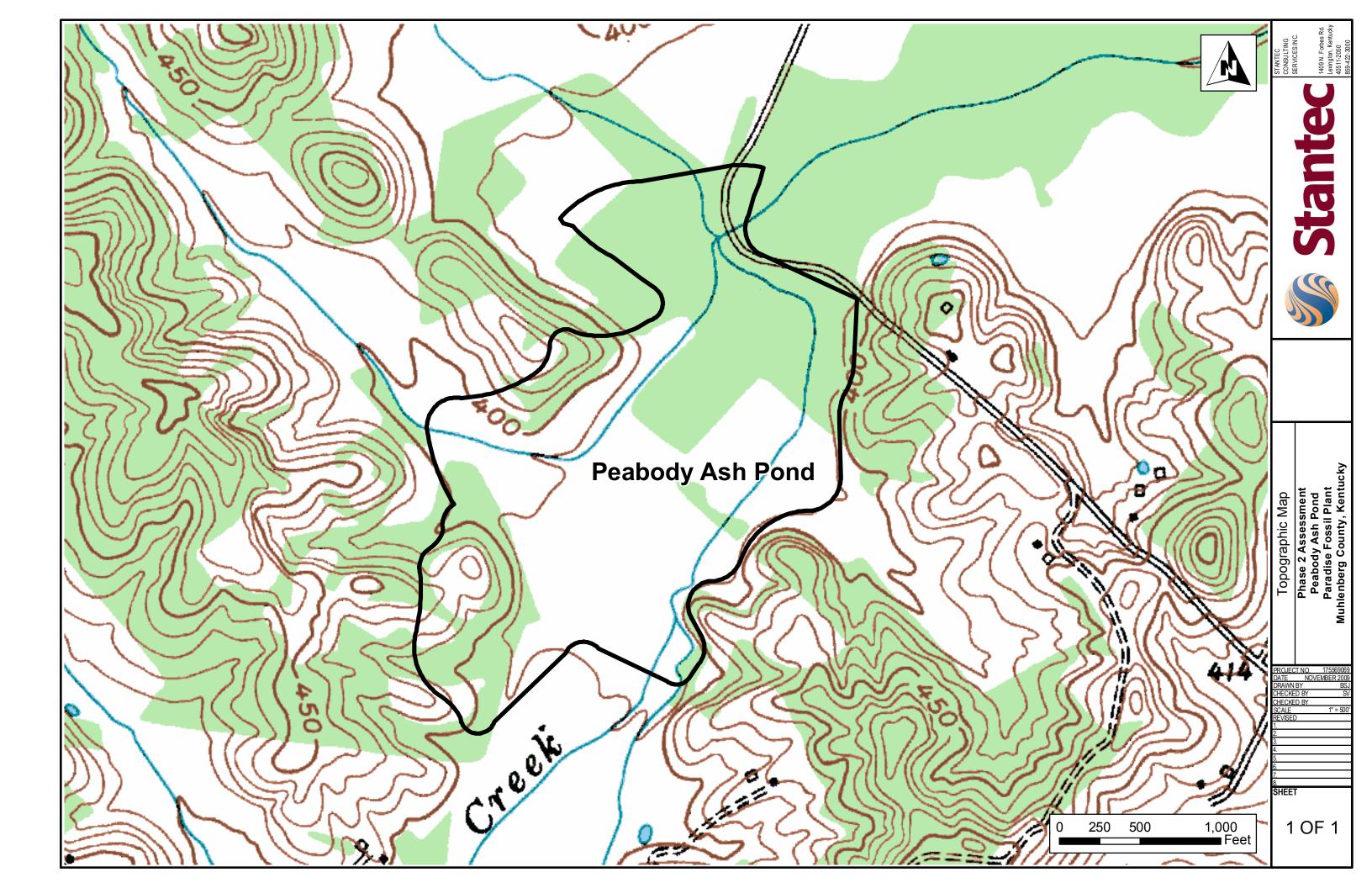
December 2009 Method: Modified Spencer

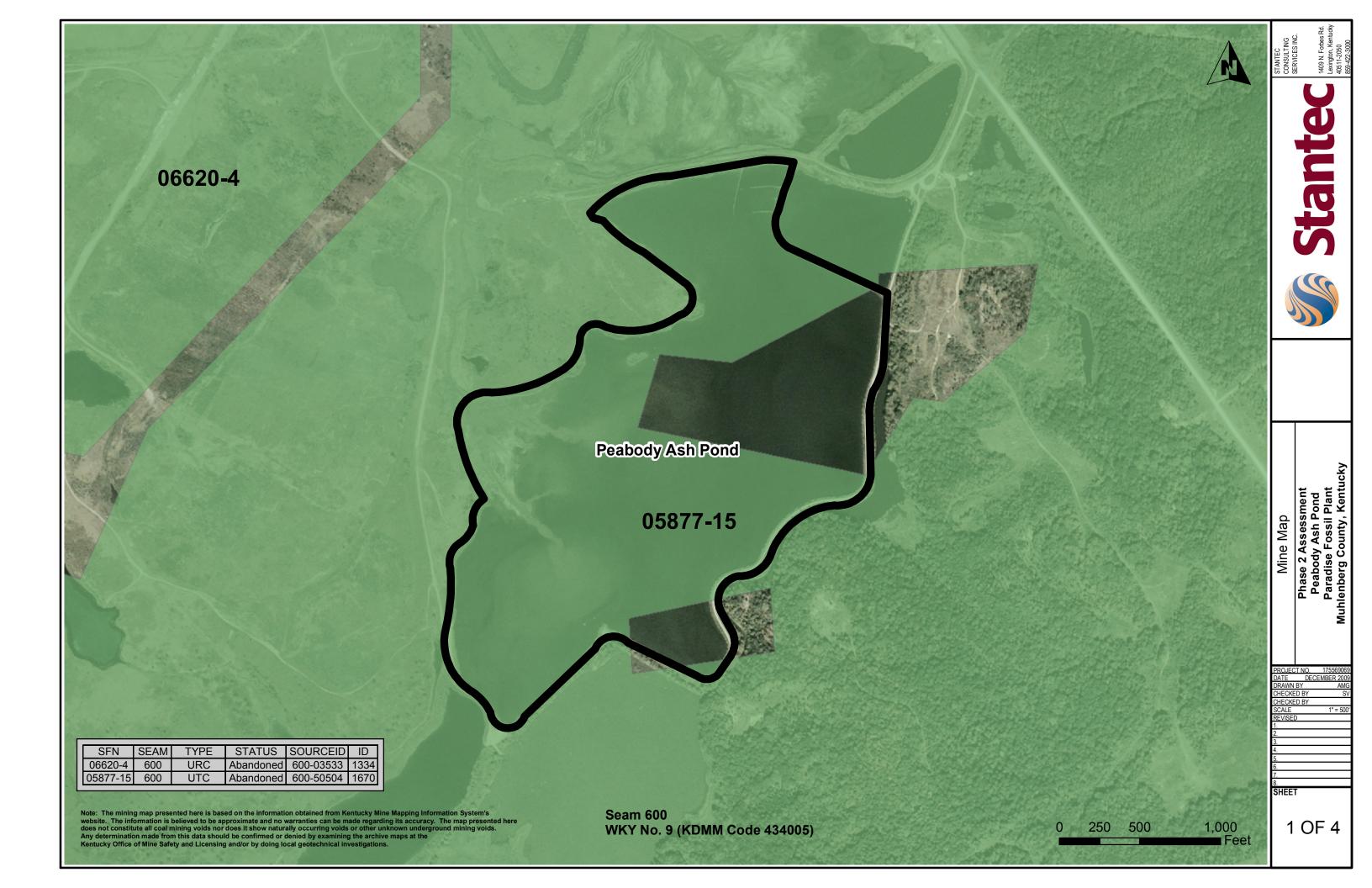

Note:

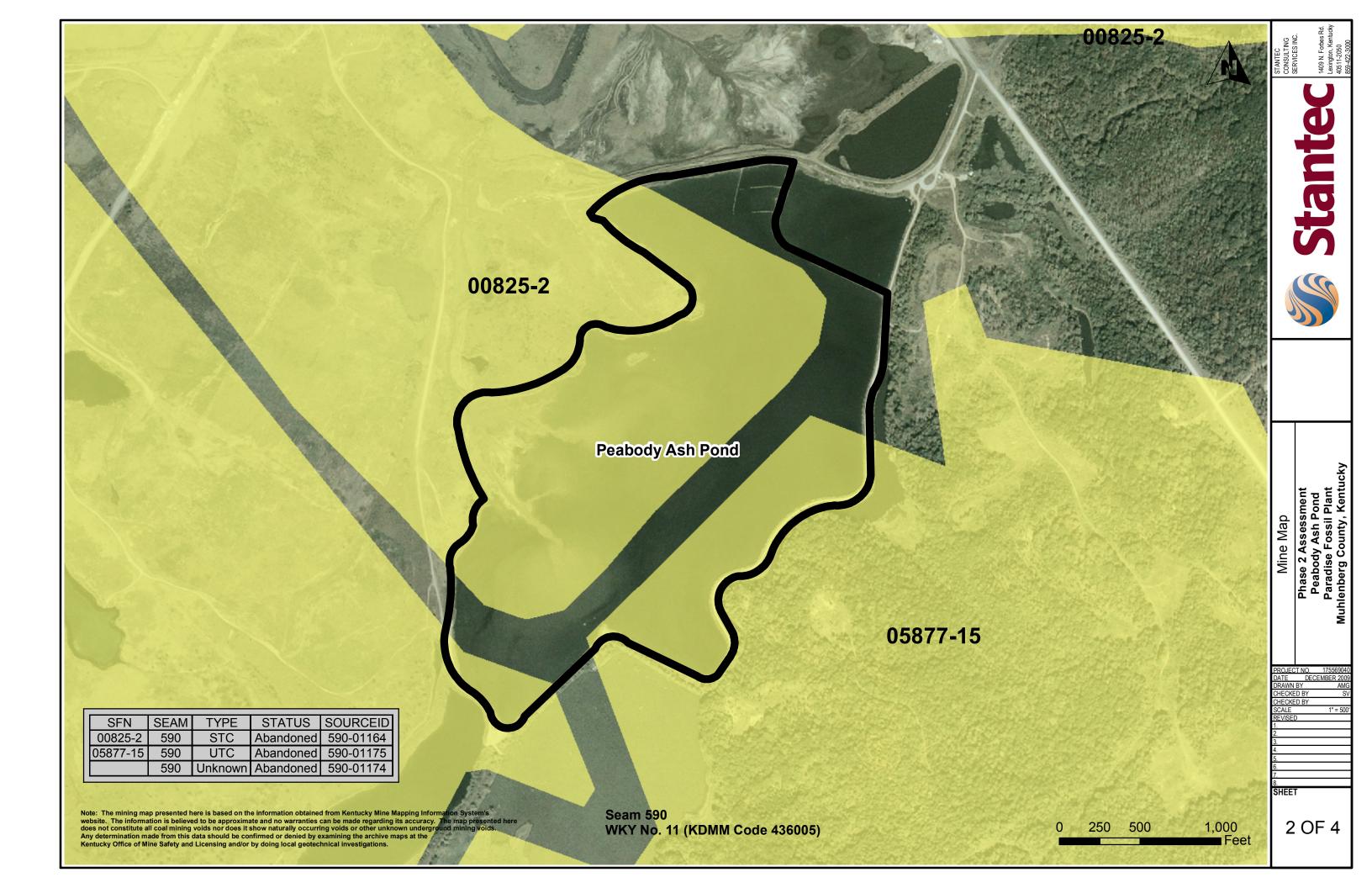
The results of analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

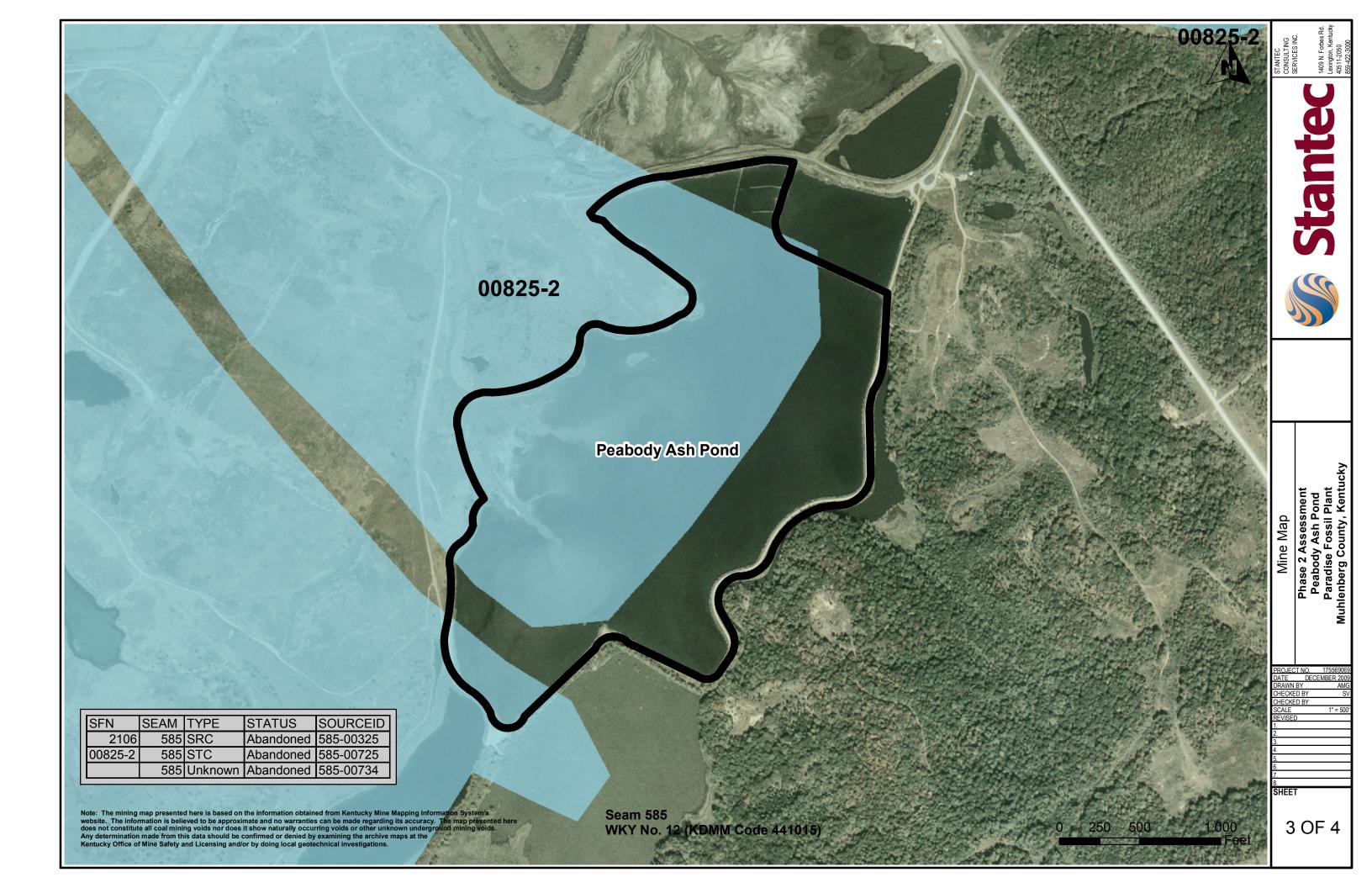
	Moist	Saturated		
Material Type	Unit Weight	Unit Weight	Cohesion	Friction Angle
Soil 1: Lean Clay with Sand	138	139	0	32
Soil 2: Lean Clay with Sand	138	139	0	32
Soil 4: Clayey Sand	129	133	0	30
Soil 6: Silty Clay	126	129	0	30
Hydraulically Placed Ash	100	107	0	25


Factor of Safety: 2.2


Existing Condition




Appendix I


Mine Maps

